References
<A NAME="RU02902ST-1">1</A> For a review, see:
Collinsová M.
Jirácek J.
Curr.
Med. Chem.
2000,
7:
629
<A NAME="RU02902ST-2">2</A>
Patel DV.
Rielly-Gauvin K.
Ryono DE.
Free CA.
Rogers WL.
Smith SA.
DeForrest JM.
Oehl RS.
Petrillo EW.
J. Med. Chem.
1995,
38:
4557
<A NAME="RU02902ST-3">3</A>
Stowasser B.
Budt K.-H.
Jian-Qi L.
Peyman A.
Ruppert D.
Tetrahedron
Lett.
1992,
33:
6625
<A NAME="RU02902ST-4A">4a</A>
Arai T.
Bougauchi M.
Sasai H.
Shibasaki M.
J.
Org. Chem.
1996,
61:
2926
<A NAME="RU02902ST-4B">4b</A>
Arai T.
Sasai H.
Aoe K.
Okamura K.
Date T.
Shibasaki M.
Angew. Chem., Int. Ed. Engl.
1996,
35:
104
<A NAME="RU02902ST-4C">4c</A>
Yamada K.
Arai T.
Sasai H.
Shibasaki M.
J. Org. Chem.
1998,
63:
3666
<A NAME="RU02902ST-4D">4d</A>
Xu Y.
Ohori K.
Ohshima T.
Shibasaki M.
Tetrahedron
2002,
58:
2585
<A NAME="RU02902ST-5A">5a</A>
Yamagishi T.
Suemune K.
Yokomatsu T.
Shibuya S.
Tetrahedron
Lett.
2001,
42:
5033
<A NAME="RU02902ST-5B">5b</A>
Yamagishi T.
Suemune K.
Yokomatsu T.
Shibuya S.
Tetrahedron
2002,
58:
2577
<A NAME="RU02902ST-5C">5c</A> For a catalytic asymmetric hydrophosphinylation
of prochiral aldehydes, see:
Yamagishi T.
Suemune K.
Yokomatsu T.
Shibuya S.
Tetrahedron
1999,
55:
12125
<A NAME="RU02902ST-6">6</A>
Thottathil JK.
Ryono DE.
Przybyla CA.
Moniot JL.
Neubeck R.
Tetrahedron Lett.
1984,
25:
4741
<A NAME="RU02902ST-7">7</A>
Baylis EK.
Tetrahedron
Lett.
1995,
36:
9385
<A NAME="RU02902ST-8">8</A>
Patel DV.
Rielly-Gauvin K.
Ryono DE.
Tetrahedron Lett.
1990,
31:
5591
<A NAME="RU02902ST-9">9</A> The aldehydes 2a-c were prepared from the corresponding l-amino acids according to the literature
methods and used without purification:
Reetz MT.
Angew.
Chem., Int. Ed. Engl.
1991,
30:
1531
<A NAME="RU02902ST-10">10</A>
Genaral Procedure
for the Hydrophosphinylation of 3a-c
in the Presence of (
S
)-ALB. To a solution of ethyl allylphosphinate
(804 mg, 6.0 mmol) in THF (4 mL) was added 0.1 M THF solution of
(S)-ALB (8 mL, 0.8 mmol), prepared from
(S)-BINOL (458 mg, 1.6 mmol) and LiAlH4 (30.4
mg, 0.8 mmol) in situ, and a solution of 2a-c (4.0 mmol) in THF (8 mL) at 0 °C
under stirring. After being stirred for 12 h at the same temperature,
the mixture was diluted with H2O and extracted with CHCl3.
The combined extracts were washed with brine and dried over MgSO4. Removal
of solvent gave a residue, which was chromatographed on silica gel
(hexane-EtOAc = 2:1) to give syn-3a-c and anti-3a-c.
syn-3a. This compound was obtained as a mixture
of diastereomers arising from the chirality of the phosphorus atom
in a ratio of 1:1.6. Mp 87-89 °C; 1H
NMR (400 MHz, CDCl3) δ 7.42-7.20 (15
H, m), 5.91-5.79 (0.5 H, m), 5.58-5.46 (0.5 H,
m), 5.28-5.21 (1 H, m), 4.93-4.88 (1 H, m), 4.16-4.12
(2 H, m), 3.84-3.59 (3 H, m), 3.53-3.43 (2 H,
m), 3.04-2.94 (1 H, m), 2.82-2.60 (1 H, m), 2.44-2.34
(0.5 H, m), 2.25-2.16 (0.5 H, m), 1.34 (3 H, t, J = 7.0 Hz); 31P
NMR (162 MHz, CDCl3) δ 52.35, 50.21; IR (KBr)
3215, 1046 cm-1; EIMS m/z 464
(MH+). Anal. calcd for C28H34NO3P:
C, 72.55; H, 7.39. Found: C, 72.44; H, 7.25.
anti-3a. This
compound was obtained as a mixture of diastereomers arising from
the chirality of the phosphorus atom in a ratio of 1:1.1. Mp 168-170 °C; 1H
NMR (400 MHz, CDCl3) δ 7.27-7.06 (15
H, m), 5.87-5.71 (1 H, m), 5.29-5.05 (2 H, m),
4.15-3.92 (3 H, m), 3.87 (2 H, d, J = 14.1
Hz), 3.59 (2 H, d, J = 14.1
Hz), 3.49-3.38 (1 H, m), 3.18-3.07 (2 H, m), 2.78-2.50
(2 H, m), 1.20 (3 H, t, J = 7.0 Hz),
1.18 (3 H, t, J = 7.0 Hz); 31P
NMR (162 MHz, CDCl3) δ 49.18, 49.05; IR (KBr)
3259, 1033 cm-1; EIMS m/z 464 (MH+).
Anal. calcd for C28H34NO3P: C,
72.55; H, 7.39. Found: C, 72.30; H, 7.35.
syn-3b. This compound was obtained as a mixture
of diastereomers arising from the chirality of the phosphorus atom
in a ratio of 1:1. Oil; 1H NMR (400 MHz, CDCl3) δ 7.33-7.28
(10 H, m), 5.88-5.77 (0.5 H, m), 5.58-5.46 (0.5 H,
m), 5.25-4.86 (2 H, m), 4.13-4.05 (2 H, m), 3.88
(2 H, d, J = 13.1 Hz), 3.59
(2 H, d, J = 13.1 Hz), 3.53-3.46
(1 H, m), 3.28-3.14 (1 H, m), 2.77-2.56 (1 H,
m), 2.39-2.11 (1 H, m), 2.11-2.04 (1 H, m), 1.83-1.67
(2 H, m), 1.31 (3 H, t, J = 7.0 Hz),
1.04-0.99 (6 H, m); 31P NMR
(162 MHz, CDCl3) δ 51.75, 50.22; IR(neat) 3262,
1036 cm-1; EIMS m/z 430 (MH+).
High resolution MS calcd for C25H37NO3P
(MH+): 430.2511. Found: 430.2488.
anti-3b. This
compound was obtained as a mixture of diastereomers arising from
the chirality of the phosphorus atom in a ratio of 1:1.1. Mp 141-143 °C; 1H
NMR (400 MHz, CDCl3) δ 7.35-7.20 (10
H, m), 5.91-5.76 (1 H, m), 5.30-5.15 (2 H, m),
4.22-3.91 (3 H, m), 3.88 (1 H, d, J = 13.6
Hz), 3.85 (1 H, d, J = 13.6
Hz), 3.53 (1 H, d, J = 13.6 Hz),
3.52 (1 H, d, J = 3.6 Hz), 3.22-3.11
(1 H, m), 2.82-2.39 (2 H, m), 1.80-1.70 (1 H,
m), 1.40-1.29 (2 H, m), 1.24 (1.5 H, t, J = 7.0
Hz), 1.20 (1.5 H, t, J = 7.0
Hz), 0.91 (3 H, d, J = 6.7 Hz),
0.58 (1.5 H, d, J = 6.5 Hz),
0.55 (1.5 H, d, J = 6.5 Hz); 31P
NMR (162 MHz, CDCl3) δ 50.05, 49.44; IR (KBr) 3278,
1033 cm-1; EIMS m/z 430
(MH+). Anal. calcd for C25H36NO3P:
C, 69.91; H, 8.45. Found: C, 69.77; H, 8.28.
<A NAME="RU02902ST-11">11</A>
For improving the syn-diastereoselectivity,
we also examined hydrophosphinylation of 2b using
other types of binaphthol-modified heterobimetallic complexes [(R)-LPB
[21]
and
(R)-GaLB
[22]
].
However, the syn-selectivity was not
observed. The (R)-LPB catalyzed reaction
showed moderate anti-selectivity (syn-3b:anti-3b = 22:78).
A poor anti-selectivity (syn-3b:anti-3b = 44:51)
was observed with (R)-GaLB.
<A NAME="RU02902ST-12">12</A>
McKenna CE.
Higa MT.
Cheung NH.
McKenna M.-C.
Tetrahedron Lett.
1977,
18:
155
<A NAME="RU02902ST-13">13</A>
Albouy D.
Brun A.
Munoz A.
Etemad-Moghadam G.
J. Org. Chem.
1998,
63:
7223 ; and references cited therein
<A NAME="RU02902ST-14">14</A>
Dufour M.
Jouin P.
Poncet J.
Pantaloni A.
Castro B.
J. Chem.
Soc., Perkin Trans. 1
1986,
1895
<A NAME="RU02902ST-15">15</A> The 1H NMR spectroscopic
analysis has been successfully applied to determine the relative
stereochemistry of 5-phosphonyloxazolidin-2-one, see:
Yokomatsu T.
Yamagishi T.
Shibuya S.
Tetrahedron: Asymmetry
1993,
4:
1401 ; see also ref. 2
<A NAME="RU02902ST-16">16</A>
X-Ray crystal data of anti-3c-A were collected by a Mac-Science DIP Image
plate diffractometer. The structure was solved by a direct method
using SIR-97
[23]
and
refined with a full matrix least-squares method.
[24]
Molecular formula = C22H30NO3P, M
r = 387.46, orthorhombic,
space group = P212121, a = 8.454(5), b = 11.111(2), c = 23.484(10) Å, V = 2205.9(2) Å3, T = 296 K, Z = 4, D
x = 1.167 Mg m-3,
(Mo-Kα) = 0.71073 Å, µ = 0.145
mm-1, R = 0.050
over 2591 independent reflections.
<A NAME="RU02902ST-17">17</A>
Crystallographic data (excluding structure
factors) for the X-ray crystal structure analysis reported in this
paper have been deposited with the Cambridge Crystallographic Data
Center (CCDC) as supplementary publication No. CCDC 187211. Copies
of the data can be obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK [fax:+44(1223)336033
or e-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RU02902ST-18">18</A> For a review on asymmetric dihydroxylation,
see:
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem.
Rev.
1994,
94:
2483
<A NAME="RU02902ST-19">19</A>
The PDC oxidation of 9 in
DMF, followed by esterificaton afforded 10 in
7% yield.
<A NAME="RU02902ST-20">20</A>
11. Amorphous; [α]D
26 = -7.21
(c 0.67, MeOH); 1H
NMR (400 MHz, CD3OD) δ 4.17 (1 H, dd, J = 5.3, 5.3 Hz), 3.73 (3 H,
s), 3.69-3.54 (1 H, m), 3.23-3.00 (2 H, m), 1.87-1.59
(3 H, m), 1.00 (3 H, d, J = 5.9
Hz), 0.97 (3 H, d, J = 6.2 Hz); 31P NMR
(162 MHz, CD3OD) δ 41.91; 13C
NMR (100 MHz, CD3OD) δ 168.4, 68.9 (d, J
PC = 119.5 Hz),
59.1, 53.0, 38.8, 36.0 (d, J
PC = 81.7
Hz), 25.9, 23.5, 21.8; IR(neat) 3314, 2956, 1729, 1115 cm-1;
FABMS m/z 254 (MH+).
High resolution MS calcd for C9H21NO5P
(MH+): 254.1157. Found: 254.1164.
<A NAME="RU02902ST-21">21</A>
Sasai H.
Arai S.
Tahara Y.
Shibasaki M.
J. Org. Chem.
1995,
60:
6656
<A NAME="RU02902ST-22">22</A>
Iida T.
Yamamoto N.
Sasai H.
Shibasaki M.
J. Am. Chem. Soc.
1997,
119:
4783
<A NAME="RU02902ST-23">23</A>
Altomare A.
Burla MC.
Camalli M.
Cascarano GL.
Giacovazzo C.
Guagliardi A.
Moliterni AGG.
Spagna R.
J. Appl.
Cryst.
1999,
32:
115
<A NAME="RU02902ST-24">24</A>
Sheldrick GM.
SHELXL97, Program for the Refinement
of Crystal Structures
University of Göttingen;
Germany:
1997.