Int J Sports Med 2002; 23(8): 575-581
DOI: 10.1055/s-2002-35543
Training & Testing

© Georg Thieme Verlag Stuttgart · New York

Does Previous Participation in High-Impact Training Result in Residual Bone Gain in Growing Girls?

One Year Follow-Up of a 9-Month Jumping InterventionS.  A.  Kontulainen1 , P.  A.  Kannus1, 2 , M.  E.  Pasanen1 , H.  T.  Sievänen1 , A.  O.  Heinonen1 , P.  Oja1 , I.  Vuori1
  • 1 The Bone Research Group, UKK Institute for Health Promotion Research, Tampere, Finland
  • 2 Department of Surgery, Tampere University Medical School and University Hospital, Tampere, Finland
Further Information

Publication History



Accepted after revision: January 30, 2002

Publication Date:
19 November 2002 (online)

Abstract

The skeletal response to exercise and training on bone is exceptionally good during the growing years. However, it is not known whether the benefit of training on bone is maintained after the training. This 20-month follow-up study assessed the effect of a 9-month jumping intervention on bone gain and physical performance in 99 girls (mean age 12.5 ± 1.5 years at the beginning of the study) one year after the end of the intervention. Both bone mineral content (BMC), by dual energy X-ray absorptiometry (DXA) at the lumbar spine and proximal femur, and physical performance parameters (standing long jump, leg extension strength, and shuttle run tests) were measured at baseline and at 20 months. A multivariate regression analysis was first used to determine the best predictors of the BMC accrual by time. Analysis showed that age at baseline and square of age, changes in height and weight, and pubertal development into Tanner stages 4 and 5 during the follow-up explained the majority of the BMC gain. Then, the effect of participation in the 9-month exercise intervention on BMC accrual and physical performance was analysed adding this variable (participation: yes/no) into the model. The regression analysis showed that the trainees (N = 50) had 4.9 % (95 % CI, 0.9 % to 8.8 %, p = 0.017) greater BMC increase in the lumbar spine than the controls (N = 49). The mean 20-month BMC increase in the lumbar spine was 28 % (SD 19) in the trainees compared to 22 % (12) increase in the controls. In the proximal femur, the trend was similar but the obtained 2 to 3 % higher BMC accrual in the trainees (compared to that in controls) were statistically insignificant. Among the performance variables, using the same model that best predicted the BMC accrual, the only statistically significant between-groups difference, in favour of the trainees, was the improvement in the standing long jump test (6.4 %, 95 % CI, 2.3 % to 10.4 %, p = 0.002). Improvements in the leg extension strength and shuttle run tests showed no between-groups difference. In conclusion, although the greatest proportion of bone mineral accrual in growing girls is attributable to growth, an additional bone gain achieved by jumping training is maintained at the lumbar spine at least a year after the end of the training.

References

  • 1 Ashizawa N, Nonaka K, Michikami S, Mizuki T, Amagai H, Tokuyama K, Suzuki M. Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD.  J Appl Physiol. 1999;  86 1347-1351
  • 2 Bailey D A, Faulkner R A, McKay H A. Growth, physical activity, and bone mineral acquisition.  Exerc Sport Sci Rev. 1996;  24 233-266
  • 3 Bailey D A, McKay H A, Mirwald R L, Crocker P R, Faulkner R A. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study.  J Bone Miner Res. 1999;  14 1672-1679
  • 4 Bass S, Pearce G, Bradney M, Hendrich E, Delmas P D, Harding A, Seeman E. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts.  J Bone Miner Res. 1998;  13 500-507
  • 5 Biewener A A, Fazzalari N L, Konieczynski D D, Baudinette R V. Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse.  Bone. 1996;  19 1-8
  • 6 Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study.  Bone Miner Res. 1998;  13 1814-1821
  • 7 Committee of experts on sports research Eurofit .Handbook for the Eurofit tests of physical fitness. 2nd ed Strasbourg; Council of Europe 1993
  • 8 Dalsky G P, Stocke K S, Ehsani A A, Slatopolsky E, Lee W C, Birge S J, Jr. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women.  Ann Intern Med. 1988;  108 824-828
  • 9 Dübbe H, Gärdsell P, Johnell O, Ormstein E. Bone mineral density in female junior, senior and former football players.  Osteoporosis Int. 1996;  6 437-441
  • 10 Etherington J, Harris P A, Nandra D, Hart D J, Wolman R L, Doyle D V, Spector T D. The effect of weight bearing exercise on bone mineral density: a study of female ex-elite athletes and the general population.  J Bone Miner Res. 1996;  11 1333-1338
  • 11 Forwood M R, Burr D B. Physical activity and bone mass: exercises in futility?.  Bone Miner. 1993;  21 89-112
  • 12 Fuchs R K, Bauer J J, Snow C M. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.  J Bone Miner Res. 2001;  16 148-156
  • 13 Haapasalo H, Kannus P, Sievänen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I. Effect of long-term unilateral activity on bone mineral density of female junior tennis players.  J Bone Miner Res. 1998;  13 310-319
  • 14 Haapasalo H, Kontulainen S, Sievänen H, Kannus P, Järvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players.  Bone . 2000;  27 351-357
  • 15 Heinonen A, Kannus P, Sievänen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I. High-impact exercise and selected risk factors for osteoporotic fractures. An 18-month prospective, randomised trial in premenopausal women.  Lancet. 1996;  348 1343-1347
  • 16 Heinonen A, Kannus P, Sievänen H, Pasanen M, Oja P, Vuori I. Good maintenance of high-impact activity-induced bone gain by voluntary, unsupervised exercises: An 8-month follow-up of a randomized controlled trial.  J Bone Miner Res. 1999;  14 125-128
  • 17 Heinonen A, Sievänen H, Kyröläinen H, Perttunen J, Kannus P. Mineral mass, size, and estimated mechanical strength of triple jumpers' lower limb.  Bone. 2001;  29 279-285
  • 18 Heinonen A, Sievänen H, Kannus P, Oja P, Pasanen M, Vuori I. High-impact exercise and bones of growing girls. A 9-month controlled trial.  Osteoporos Int. 2000;  11 1010-1017
  • 19 Joakimsen R M, Magnus J H, Fonnebo V. Physical activity and predisposition for hip fractures: a review.  Osteoporos Int. 1997;  7 503-513
  • 20 Kannus P, Haapasalo H, Sankelo M, Sievänen H, Pasanen M, Heinonen A, Oja P, Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players.  Ann Intern Med. 1995;  123 27-31
  • 21 Karlsson M K, Hasserius R, Obrant K J. Bone mineral density in athletes during and after career: A comparison between loaded and unloaded skeletal regions.  Calcif Tissue Int. 1996;  59 245-248
  • 22 Karlsson M K, Johnell O, Obrant K J. Is bone mineral density advantage maintained long-term in previous weight lifters?.  Calcif Tissue Int. 1995;  57 352-328
  • 23 Khan K, McKay H A, Haapasalo H, Bennell K L, Forwood M R, Kannus P, Wark J D. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton?.  J Sci Med Sport. 2000;  2 150-164
  • 24 Khan K M, Bennell K L, Hopper J L, Flicker L, Nowson C A, Sherwin A J, Crichton K J, Harcourt P R, Wark J D. Self-reported ballet classes undertaken at age 10 - 12 years and hip bone mineral density in later life.  Osteoporos Int. 1998;  8 165-173
  • 25 Khan K M, G reen R M, Saul A, Bennell K L, Crichton K J, Hopper J L, Wark J D. Retired elite female ballet dancers and nonathletic controls have similar bone mineral density at weightbearing sites.  J Bone Miner Res. 1996;  11 1566-1574
  • 26 Kirchner E M, Lewis R D, O'Connor P J. Effect of past gymnastic participation on adult bone mass.  J Appl Phys. 1996;  80 226-232
  • 27 Kiuchi A, Arai Y, Katsuta S. Detraining effects on bone mass in young male rats.  Int J Sports Med. 1998;  19 245-249
  • 28 Kontulainen S, Kannus P, Haapasalo H, Heinonen A, Sievänen H, Oja P, Vuori I. Changes in bone mineral content with decreased training in competitive young adult tennis players and controls: a prospective 4-yr follow-up.  Med Sci Sports Exerc. 1999;  31 646-652
  • 29 Kontulainen S, Kannus P, Haapasalo H, Sievänen H, Heinonen A, Oja P, Vuori I. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players.  J Bone Miner Res. 2001;  16 195-201
  • 30 Kröger H, Kotaniemi A, Kröger L, Alhava E. Development of bone mass and bone density of the spine and femoral neck - a prospective study of 65 children and adolescents.  Bone Miner. 1993;  23 171-182
  • 31 Lindholm C, Hagenfeldt K, Ringertz H. Bone mineral content of young female former gymnasts.  Acta Paediatr. 1995;  84 1109-1112
  • 32 Lloyd T, Chinchilli V M, Johnson-Rollings N, Kieselhorst K, Eggli D F, Marcus R. Adult female hip bone density reflects teenage sports-exercise patterns but not teenage calcium intake.  Pediatrics. 2000;  106 40-44
  • 33 McKay H A, Petit M A, Schutz R W, Prior J C, Barr S I, Khan K M. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children.  J Pediatr. 2000;  136 156-162
  • 34 Morris F L, Naughton G A, Gibbs J L, Carlson J S, Wark J D. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass.  J Bone Miner Res. 1997;  12 1453-1462
  • 35 Morris N M, Udry J R. Validation of a self-administered instrument to assess stage of adolescent development.  J Youth Adolesc. 1980;  9 271-280
  • 36 Parfitt A M. The two faces of growth: benefits and risks to bone integrity.  Osteoporos Int. 1994;  4 382-398
  • 37 Sievänen H, Kannus P, Nieminen V, Heinonen A, Oja P, Vuori I. Estimation of various mechanical characteristics of human bone using dual energy x-ray absorptiometry.  Bone. 1996;  18 17-28
  • 38 Sievänen H, Oja P, Vuori I. Scanner-induced variability and quality assurance in longitudinal dual-energy X-ray absorptiometry measurements.  Med Phys. 1994;  21 795-805
  • 39 Sievänen H, Uusi-Rasi K, Heinonen A, Oja P, Vuori I. Disproportionate, agerelated bone loss in long bone ends: A structural analysis based on dual energy X-ray absorptiometry.  Osteoporos Int. 1999;  10 295-302
  • 40 Silberman M, Schapira D, Leicter I, Steinberg R. Moderate physical exercise throughout adulthood increases peak bone mass at the middle age and maintains higher trabecular bone density in vertebrae of senescent female rats.  Cells Mater. 1991;  S1 151-158
  • 41 Suominen H. Bone mineral density and long term exercise.  Sports Med. 1993;  16 316-330
  • 42 Uusi-Rasi K, Haapasalo H, Kannus P, Pasanen M, Sievänen H, Oja P, Vuori I. Determinants of bone mineralization in 8 to 20 year old Finnish females.  Eur J Clin Nutr. 1997;  51 54-59
  • 43 Winters K M, Snow C M. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women.  J Bone Miner Res. 2000;  15 2495-2503
  • 44 Wolff I, van Croonenborg J J, Kemper H C, Kostense P J, Twisk J W. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women.  Osteoporos Int. 1999;  9 1-12
  • 45 Vuori I, Heinonen A, Sievänen H, Kannus P, Pasanen M, Oja P. Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones.  Calcif Tissue Int. 1994;  55 59-67

S. Kontulainen

UKK Institute

PO Box 30 · 33501 Tampere · Finland ·

Phone: +358-3-2829111

Fax: + 358-3-2829200

    >