Zusammenfassung
Nach Vorstellung des ersten industriereifen Positronenemissionstomographen im Jahre
1975 stand zunächst die Untersuchung des Hirnstoffwechsels im Vordergrund der klinischen
Forschung. Seit Ende der Achtzigerjahre kommt die PET auch zunehmend in der Kardiologie
und Onkologie zur Anwendung. Seit der Mitte der Neunzigerjahre wird die PET auch zur
Klärung orthopädischer Fragestellungen, beispielsweise bei der Diagnostik einer Osteomyelitis
oder in der Vitalitätsdiagnostik von Knochentransplantaten eingesetzt. Die onkologische
Skelettdiagnostik beinhaltet die Suche nach Skelettmetastasen und die Untersuchung
der Aggressivität, dem Staging und der Therapiekontrolle primärer Knochentumoren.
Im Folgenden werden die aus der Literatur bekannten Ergebnisse der Skelettdiagnostik
mit PET vorgestellt und diskutiert.
Abstract
The first PET camera was introduced into clinical practice in 1975. Initially, PET
was considered an excellent research modality for assessment of brain metabolism.
Since the early 1980s numerous studies demonstrated its ability to answer questions
in cardiology and oncology like detecting hibernating myocardium and differential
diagnosis, staging and therapy control of several malignant tumors. Since the mid-1990s
PET has also been used for orthopaedic indications such as assessment of osteomyelitis
and viability control of bone crafts. Further applications in assessment of bone disorders
are screening for bone metastases and staging and therapy control of primary bone
tumors.
Schlüsselwörter
PET - Skelett - Fluordesoxyglukose - Natriumfluorid
Key words
PET - skeleton - fluorodeoxyglucose - sodium fluoride
Literatur
- 1 Capanaci M. Bone and Soft Tissue Tumors. Springer, Wien, New York 1990
- 2
Kern K A, Brunetti A, Norton J A, Chang A E, Malawer M, Lack E, Finn R D, Rosenberg S A,
Larson S M.
Metabolic imaging of human extremity musculoskeletal tumors by PET.
J Nucl Med.
1988;
29
181-186
- 3
Adler L P, Blair H F, Markley J T, Wiliams R P, Joyce M J, Leisure G, al-Kaisi N,
Miraldi F.
Noninvasive Grading of musculoskeletal tumors using PET.
J Nucl Med.
1991;
32
1508-1512
- 4
Dehdashti F, Siegel B A, Griffeth L K, Fuselman M J, Trask D D, McGuire A H, McGuire D J.
Benign versus malignant intraosseous lesions: discrimination by means of PET with
2-[F18]fluoro-2-deoxyglucose.
Radiology.
1996;
200
243-247
- 5
Kole A C, Nieweg O E, Hoekstra H J, van Horn J R, Koops H S, Vaalburg W.
Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors.
J Nucl Med.
1998;
39
810-815
- 6
Schulte M, Brecht-Kraus D, Heymer B, Guhlmann A, Hartwig E, Sarkar M R, Diederichs C G,
von Baer A, Kotzerke J, Reske S N.
Grading of tumors and tumorlike of bone: evaluation by FDG-PET.
J Nucl Med.
2000;
41
1695-1701
- 7
Franzius C, Daldrup-Link H E, Wagner-Bohn A, Sciuk J, Heindel W L, Jürgens H, Schober O.
FDG-PET for detection of recurences from malignant primary bone tumors: comparison
with conventional imaging.
Ann Oncol.
2002;
13
157-160
- 8
Meyers P A, Heller G, Healey J. et al .
Chemotherapy for nonmetastatic osteogenic sarcoma: The Memorial Sloan-Kettering experience.
J Clin Oncol.
1992;
10
5-15
- 9
Schulte M, Brecht-Kraus D, Werner M. et al .
Evaluation of neoadjuvant therapy response of osteogenic sarkoma using 2-[Fluorine-18]-Fluoro-2-Deoxy-2-Glucose.
J Nucl Med.
1999;
40
1637-1643
- 10
Franzius C, Sciuk J, Brinkschmidt C, Jürgens H, Schober O.
Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron
emission tomography compared with histologically assessed tumor necrosis.
Clin Nucl Med.
2000;
25
874-881
- 11 Rubens R D, Fogelman I. Bone Metastases. Springer, London, Berlin, Heidelberg,
New York, Tokio, Honkong 1991
- 12
Schirrmeister H, Guhlmann C A, Nüssle K, Elsner K, Kotzerke J, Reske S N.
Die Positronenemissionstomographie des Skelettsystems mit 18FNa: Häufigkeit, Befundmuster
und Verteilung von Skelettmetastasen.
Röntgenpraxis.
1999;
52
19-25
- 13
Schirrmeister H, Buck A K, Guhlmann C A, Reske S N.
Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer
assessed with 18F-sodium fluoride PET.
Thyroid.
2001;
11
677-683
- 14
Venz S, Hosten N, Friedrichs R, Neumann K, Nagel R, Felix R.
Osteoplastische Knochenmetastasen beim Prostatakarzinom: Magnetresonanztomographie
und Knochenmarkszintigraphie.
Fortschr Röntgenstr.
1994;
161
64-69
- 15
Gosfield E, Alavi A, Kneeland B.
Comparison of Radionuclide Bone Scans and Magnetic Resonance Imaging in Detecting
Spinal Metastases.
J Nucl Med.
1993;
34
2191-2198
- 16
Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B,
Nüssle K, Reske S N.
Sensitivity in detecting osseous lesions depends on anatomical localization: Planar
bone scintigraphy vs. 18F-PET.
J Nucl Med.
1999;
40
1623-1629
- 17
Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kühn T, Kreienberg R, Messer P,
Nüssle K, Glatting G, Träger H, Neumaier B, Reske S N.
Early detection and accurate description of extent of metastatic bone disease in breast
cancer with 18F-fluoride ion and positron emission tomography.
J Clin Oncol.
1999;
17
2381-2389
- 18
Schirrmeister H, Glatting G, Hetzel J, Nüssle K, Arslandemir C, Buck A K, Dziuk K,
Gabelmann A, Reske S N, Hetzel M.
Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18F-labeled
NaF PET in newly diagnosed lung cancer.
J Nucl Med.
2001;
42
1800-1804
- 19
Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo B.
Fluorine-18 deoxyglucose positron emission tomography for detection of bone metastases
in patients with non-small cell lung cancer.
Eur J Nucl Med.
1998;
25
1244-1247
- 20
Cook G J, Houston S, Rubens R D, Maisey M N, Fogelman I.
Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity
in osteoblastic and osteolytic lesions.
J Clin Oncol.
1998;
16
3375-3379
- 21
Schirrmeister H, Kühn T, Guhlmann A, Santjohanser C, Hörster T, Nüssle K, Koretz K,
Glatting G, Rieber A, Kreienberg R, Buck A, Reske S N.
[F-18] 2-deoxy-2-fluoro D-glucose PET in preoperative staging of breast cancer - Comparison
with the standard staging procedures.
Eur J Nucl Med.
2001;
28
351-358
- 22
Shreve P D, Grossmann H B, Gross M D, Wahl R L.
Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro D-glucose.
Radiology.
1996;
199
751-756
- 23
Franzius C, Sciuk J, Daldrup-Link H E, Jürgens H, Schober O.
FDG-PET for detection of osseous metastases from malignant primary bone tumors with
bone scintigraphy.
Eur J Nucl Med.
2000;
27
1305-1311
- 24
Hoane B R, Shields A F, Porter B A. et al .
Detection of lymphomateous bone marrow involvement with magnetic resonance imaging.
Blood.
1991;
78
728-738
- 25
Shields A F, Porter B A, Churchley S. et al .
The detection of bone marrow involvement by lymphoma using magnetic resonance imaging.
J Clin Oncol.
1987;
5
225-230
- 26
Lecouvet F E, Malghem J, Michaux L, Maldague B, Ferrant A.
Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey.
Br J Haemtol.
1999;
106
35-39
- 27
Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhoven N, Reske S N.
18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomateous
bone marrow.
J Clin Oncol.
1998;
16
603-609
- 28
Moog F, Kotzerke J, Reske S N.
FDG-PET can replace bone scintigraphy in primary staging of malignant lymphoma.
J Nucl Med.
1999;
40
1407-1413
- 29
Carr R, Barrington S F, Madan B, O'Doherty M R, Saunders C A, van der Walt J, Timothy A R.
Detection of lymphoma in bone marrow by whole-body positron emission tomography.
Blood.
1998;
91
3340-3346
- 30
Schirrmeister H, Bommer M, Buck A K, Müller S, Messer P, Bunjes D, Bergmann L, Reske S N.
Initial results in assessment of multiple myeloma by using F-18 FDG and positron emission
tomography.
Eur J Nucl Med.
2002;
29
361-366
- 31
Guhlmann A, Brecht-Kraus D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske S N.
Fluorine-18 FDG PET and technetium-99m atigranulzyte antibody scintigraphy in chronic
osteomyelitis.
J Nucl Med.
1998;
39
2145-2152
- 32
Guhlmann A, Brecht-Kraus D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske S N.
Chronic Osteomyelitis: detection with FDG PET and correlation with histopathologic
findings.
Radiology.
1998;
206
749-754
- 33
Berding G, Burchert W, van den Hoff J, Pytlik C, Neukam F W, Meyer G J, Gratz K F,
Hundeshagen H.
Evaluation of the incorporation of bone grafts using in maxillofacial surgery with
[18F]-fluoride ion and dynamic positron emission tomography.
Eur J Nucl Med.
1995;
22
1133-1140
- 34
Schiepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmanns L, De Roo M.
Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride
PET.
J Nucl Med.
1997;
38
1970-1976
- 35
Schiepers C, Broos P, Miserez M, Bormans G, De Roo M.
Measeurement of skeletal flow with positron emission tomography and 18F-fluoride in
femoral head osteonecrosis.
Arch Orthop Trauma Surg.
1998;
118
131-135
Dr. med. Holger Schirrmeister
Christian-Albrechts- Universität zu Kiel · Klinik für Nuklearmedizin
Arnold-Heller-Straße 9
24105 Kiel
Email: hschirrmeister@wkk-hei.de