Semin Musculoskelet Radiol 2002; 06(3): 241-252
DOI: 10.1055/s-2002-36722
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Identification of Vertebral Fractures in Osteoporosis

Ali Guermazi, Andreas Mohr, Mikayel Grigorian, Bachir Taouli, Harry K. Genant
  • Osteoporosis and Arthritis Research Group, Department of Radiology, University of California San Francisco, San Francisco, California
Further Information

Publication History

Publication Date:
23 January 2003 (online)

ABSTRACT

Osteoporosis is a systemic skeletal disease characterized by reduced bone mass and microarchitectural deterioration. These lead to subsequent increase in bone fragility and susceptibility to low-trauma or atraumatic fractures, most commonly vertebral fractures but also fractures of hip and wrist. These have a significant impact on morbidity, mortality, and health care cost. Studies have demonstrated that the presence of vertebral fractures is an independent and significant predictor of the increased risk for further fractures. The occurrence of a vertebral fracture is often clinically asymptomatic, and many of these fractures, therefore, remain undiagnosed. Recently, a number of techniques have been developed that allow for reliable identification of vertebral fractures on radiographs. The two most widely used methods in clinical research are the semiquantitative assessment of vertebral deformities, which is based on visual evaluation, and the quantitative approach, which is based on different morphometric criteria. In our practice for osteoporosis evaluation we use the Genant semiquantitative approach-an accurate and reproducible method, tested and applied in many clinical studies. The newest generation of fan-beam dual energy X-ray absorptiometry (DXA) systems delivering "high-resolution" lateral spine images offer a potential practical alternative to radiographs for clinical vertebral fracture analysis. The advantages of using DXA over conventional X-ray devices are its minimal radiation exposure and high-speed image acquisition. It also allows combined evaluation of vertebral fracture status and bone mineral density, which could become a standard for patient assessment in osteoporosis.

REFERENCES

  • 1 Consensus Development Conference. Diagnosis, prophylaxis, and treatment of osteoporosis.  Am J Med . 1993;  94 646-650
  • 2 National Osteoporosis Foundation. America's Bone Health: The State of Osteoporosis and Low Bone Mass in Our Nation. Washington, DC: National Osteoporosis Foundation; 2000
  • 3 Hodgkinson R, Njeh C F, Currey J D, Langton C M. The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro.  Bone . 1997;  21 183-190
  • 4 National Osteoporosis Foundation. Physician's Guide to Prevention and Treatment of Osteoporosis Washington, DC: National Osteoporosis Foundation; 1998
  • 5 Kanis J A, Delmas P, Burckhardt P, Cooper C, Torgerson D. Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease.  Osteoporos Int . 1997;  7 390-406
  • 6 World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group: Geneva.  WHO . 1994;  843 1-129
  • 7 Black D M, Arden N K, Palermo L, Pearson J, Cummings S R. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group.  J Bone Miner Res . 1999;  14 821-828
  • 8 Davis J W, Grove J S, Wasnich R D, Ross P D. Spatial relationships between prevalent and incident spine fractures.  Bone . 1999;  24 261-264
  • 9 Kotowicz M A, Melton 3rd J L, Cooper C. Risk of hip fracture in women with vertebral fracture.  J Bone Miner Res . 1994;  9 599-605
  • 10 Melton III J L, Atkinson E J, Cooper C, O'Fallon W M, Riggs B L. Vertebral fractures predict subsequent fractures.  Osteoporos Int . 1999;  10 214-221
  • 11 Nevitt M C, Ross P D, Palermo L. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. The Fracture Intervention Trial Research Group.  Bone . 1999;  25 613-619
  • 12 Ross P D, Davis J W, Epstein R S, Wasnich R D. Pre-existing fractures and bone mass predict vertebral fracture incidence in women.  Ann Intern Med . 1991;  114 919-923
  • 13 Ross P D, Genant H K, Davis J W, Miller P D, Wasnich R D. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women.  Osteoporos Int . 1993;  3 120-126
  • 14 Black D, Pearson J, LaCroix A Z, Cummings S R. Predicting the effect of antiresorptive treatments on risk of vertebral fractures: a meta-analysis.  J Bone Miner Res . 1999;  14 S137
  • 15 Cummings S R, Black D M, Thompson D E. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial.  JAMA . 1998;  280 2077-2082
  • 16 Delmas P D, Ensrud K E, Harris S. Raloxifene therapy for 3 years reduces the risk of incident vertebral fractures in postmenopausal women.  Calcif Tiss Int . 1999;  64 S43
  • 17 Ensrud K E, Black D M, Palermo L. Treatment with alendronate prevents fractures in women at highest risk: results from the Fracture Intervention Trial.  Arch Intern Med . 1997;  157 2617-2624
  • 18 Hochberg M C, Ross P D, Black D. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Fracture Intervention Trial Research Group.  Arthritis Rheum . 1999;  42 1246-1254
  • 19 Ensrud K E, Nevitt M C, Palermo L. What proportion of incident morphometric vertebral fractures are clinically diagnosed and vice versa?.  J Bone Miner Res . 1999;  14 S138
  • 20 Ettinger B, Cooper C. Clinical assessment of osteoporotic vertebral fractures. In: Genant HK, Jergas M, van Kuijk C, eds. Vertebral Fracture in Osteoporosis San Francisco, CA: Radiology Research and Education Foundation Publishers 1995: 15-20
  • 21 Ettinger B, Black D M, Nevitt M C. Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group.  J Bone Miner Res . 1992;  7 449-456
  • 22 Roux C, Pols H, Giraudeau B. Women with silent osteoporosis: impact baseline data. Poster presented at: 23rd Annual Meeting of the American Society for Bone and Mineral Research; October 12-16, 2001; Phoenix, AZ
  • 23 Kleerekoper M, Nelson D A. Vertebral fracture or vertebral deformity.  Calcif Tissue Int . 1992;  50 5-6
  • 24 Genant H K, Wu C Y, van Kuijk C, Nevitt M C. Vertebral fracture assessment using a semiquantitative technique.  J Bone Miner Res . 1993;  8 1137-1148
  • 25 Genant H K, van Kuijk C, Jergas M. Vertebral Fracture in Osteoporosis.  San Francisco, CA: Radiology Research and Education Foundation Publishers; 1995
  • 26 Genant H K, Jergas M, Palermo L. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group.  J Bone Miner Res . 1996;  11 984-996
  • 27 Ettinger B, Block J E, Smith R. An examination of the association between vertebral deformities, physical disabilities and psychosocial problems.  Maturitas . 1988;  10 283-296
  • 28 Heuck A F, Block J, Glueer C C, Steiger P, Genant H K. Mild versus definite osteoporosis: comparison of bone densitometry techniques using different statistical models.  J Bone Miner Res . 1989;  4 891-900
  • 29 Storm T, Thamsborg G, Steiniche T, Genant H K, Sørenson O H. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis.  New Engl J Med . 1990;  322 1265-1271
  • 30 Watts N B, Harris S T, Genant H K. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis.  New Engl J Med . 1990;  323 73-79
  • 31 Wu C Y, Li J, Jergas M, Genant H K. Semiquantitative and quantitative assessment of incident fractures: comparison of methods.  J Bone Miner Res . 1994;  9 S157
  • 32 Black D M, Cummings S R, Stone K. A new approach to defining normal vertebral dimensions.  J Bone Miner Res . 1991;  6 883-892
  • 33 McCloskey E V, Spector T D, Eyres K S. The assessment of vertebral deformity: a method for use in population studies and clinical trials.  Osteoporos Int . 1993;  3 138-147
  • 34 Melton III J L, Kan S H, Frye M A. Epidemiology of vertebral fractures in women.  Am J Epidemiol . 1989;  129 1000-1011
  • 35 Ross P D, Davis J W, Epstein R S, Wasnich R D. Ability of vertebral dimensions from a single radiograph to identify fractures.  Calcif Tiss Int . 1992;  51 95-99
  • 36 Spector T D, McCloskey E V, Doyle D V, Kanis J A. Prevalence of vertebral fracture in women and the relationship with bone density and symptoms: the Chingford Study.  J Bone Miner Res . 1993;  8 817-822
  • 37 Harrison J E, Patt N, Muller C. Bone mineral mass associated with postmenopausal vertebral deformities.  Bone Miner . 1990;  10 243-251
  • 38 Black D, Palermo L, Nevitt M C, the Study of Osteoporotic Fractures Research Group. Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures.  J Bone Miner Res . 1995;  10 890-902
  • 39 van Kuijk  C, Genant H K. Radiology in osteoporosis. In: Riggs BL, Melton LJ, eds. Osteoporosis. New York: Raven Press 1995
  • 40 Leidig-Bruckner G, Genant H K, Minne H W. Comparison of a semiquantitative and a quantitative method for assessing vertebral fractures in osteoporosis.  Osteoporos Int . 1994;  4 154-161
  • 41 Kiel D. Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures.  J Bone Miner Res . 1995;  10 518-523
  • 42 Katragadda C S, Fogel S R, Cohen G. Digital radiography using a computed tomographic instrument.  Radiology . 1979;  133 83-87
  • 43 Sener R N, Ripeckyj G T, Otto P M, Rauch R A, Jinkins J R. Recognition of abnormalities on computed scout images in CT examinations of the head and spine.  Neuroradiology . 1993;  35 229-231
  • 44 Takada M, Wu C Y, Lang T F, Genant H K. Vertebral fracture assessment using the lateral scoutview of computed tomography in comparison with radiographs.  Osteoporos Int . 1998;  8 197-203
  • 45 Bell G, Finlay D. Basic Radiographic Positioning and Anatomy.  London: Bailliere Publishers; 1986
  • 46 Blake G M, Rea J A, Fogelman I. Vertebral morphometry studies using dual-energy x-ray absorptiometry.  Semin Nucl Med . 1997;  27 276-290
  • 47 Christenson P C. The radiologic study of the normal spine: cervical, thoracic, lumbar, and sacral.  Radiol Clin North Am . 1977;  15 133-154
  • 48 Hans D, Baiada A, Duboeuf F. Expert-XL: clinical evaluation of a new morphometric technique on 21 patients with vertebral fracture.  Osteoporos Int . 1996;  6 79-83
  • 49 Jergas M, Lang T F, Fuerst T. Morphometric x-ray absorptiometry. In: Genant HK, Jergas M, van Kuijk C, eds. Vertebral Fracture in Osteoporosis San Francisco, CA: Radiology Research and Education Foundation Publishers 1995: 331-348
  • 50 Lang T, Takada M, Gee R. A preliminary evaluation of the Lunar Expert-XL for bone densitometry and vertebral morphometry.  J Bone Miner Res . 1997;  12 136-143
  • 51 Rea J A, Li J, Blake G M. Visual assessment of vertebral deformity by x-ray absorptiometry: a highly predictive method to exclude vertebral deformity.  Osteoporos Int . 2000;  11 660-668
  • 52 Rea J A, Steiger P, Blake G M, Fogelman I. Optimizing data acquisition and analysis of morphometric x-ray absorptiometry.  Osteoporos Int . 1998;  8 177-183
  • 53 Steiger P, Cummings S R, Genant H K, Weiss H. Morphometric x-ray absorptiometry of the spine: correlation in vivo with morphometric radiography. Study of Osteoporotic Fractures Research Group.  Osteoporos Int . 1994;  4 238-244
  • 54 Jensen G F, McNair P, Boesen J, Hegedus V. Validity in diagnosing osteoporosis. Observer variation in interpreting spinal radiographs.  Eur J Radiol . 1984;  4 1-3
    >