Informationen aus Orthodontie & Kieferorthopädie 2002; 34(4): 243-252
DOI: 10.1055/s-2002-36885
Articles

© Georg Thieme Verlag

Veränderung der Molarenbeziehung während der Gebissentwicklung bei unterschiedlichen skelettalen Wachstumsmustern[*]

Transition of molar relationships in different skeletal growth patternsYong E. Kim1 , Ram S. Nanda1 , Pramod K. Sinha1
  • 1Department of Orthodontics, University of Oklahoma, USA
Further Information

Publication History

Publication Date:
24 January 2003 (online)

Zusammenfassung:

Die Studie untersuchte unterschiedliche maxilläre und mandibuläre Wachstumsmuster und deren jeweiligen Auswirkungen auf die Veränderung der Molarenrelation während der Entwicklung vom frühen Wechselgebiss zur bleibenden Dentition des Erwachsenen. Dazu wurden fortlaufend angefertigte Fernröntgenaufnahmen von 40 Probanden ausgewertet. Die Probanden wurden in Abhängigkeit von ihrem Wachstumsmuster in drei Gruppen eingeteilt. In Gruppe A war das Unterkieferwachstum im Vergleich zum Oberkiefer stärker ausgeprägt, in Gruppe B wuchsen beide Kiefer gleichmäßig und in Gruppe C übertraf das Oberkieferwachstum das des Unterkiefers.

Die Ergebnisse zeigten, dass während des Zahnwechsels die Molarenrelation durch unterschiedliches Wachstum der Kiefer signifikant beeinflusst wird. Das Wachstumsmuster beeinflusst aber nicht nur die sagittale Lage der Kieferknochen, sondern auch das Ausmaß der physiologischen Mesialdrift der Zähne. Dagegen veränderte im bleibenden Gebiss ein unterschiedliches Ausmaß von Ober- und Unterkieferwachstum die Molarenrelation nicht mehr. Hier wurde das ungleiche Wachstum von dentoalveolären Kompensationsmechanismen ausgeglichen. Die Zahnbewegungen zeigten ein charakteristisches Muster in Abhängigkeit vom Ausmaß des Wachstumsunterschieds: (1) Übertraf das Unterkieferwachstum das des Oberkiefers, wurde der Wachstumsunterschied durch eine Mesialwanderung der oberen ersten Molaren und eine Kippung der Okklusionsebene gegen den Uhrzeigersinn ausgeglichen. In der Front kam es zur Vorverlagerung und Labialkippung der Oberkieferfront und zum Steilstand der Unterkieferfront. (2) Bei überschießendem Oberkieferwachstum wurde die skelettale Differenz hauptsächlich durch eine Mesialwanderung der unteren ersten Molaren kompensiert. Die Mesialdrift der oberen Molaren war in diesem Fall minimal. Die Neigung der Okklusionsebene veränderte sich ebenfalls nur unwesentlich. Die skelettale Wirkung auf die Frontzahnbeziehung wurde kompensiert durch einen Steilstand der oberen Schneidezähne und eine Vorverlagerung sowie Labialkippung der Unterkieferfront.

Summary

This study investigated maxillary and mandibular growth differences and their effect on the changes in molar relationships from early transitional dentition to adult permanent dentition. Various landmarks were identified and measurements made on the longitudinal cephalometric radiographs of 40 people. The subjects were classified into 3 groups based on the amount of sagittal skeletal growth difference between the jaws. In group A, the mandible grew more than did the maxilla; in Group B, growth was about the same; and in group C, the maxilla grew more than did the mandible. The results revealed that skeletal growth differences between the jaws significantly influenced the changes in molar relationship during the transitional dentition, not only by translating basal bones but also by altering the amount of physiologic mesial shift in the dentition. However, the skeletal growth difference during the permanent dentition did not influence the changes in molar relationship. The sagittal growth difference between the jaws was largely absorbed by a dentoalveolar compensation. Tooth movement showed different characteristic features depending on the amount of the skeletal growth difference; (1) If the mandible grew more than did the maxilla, the growth difference was mostly absorbed by mesial displacement of the maxillary first molars and counterclockwise rotation of the occlusal plane. Anterior occlusion was adjusted by mesial displacement and labial inclination of the maxillary incisors and lingual inclination of the mandibular incisors. (2) If the maxilla grew more than did the mandible, the growth difference was mainly absorbed by mesial displacement of the mandibular molars. Then the maxillary molars showed minimal mesial displacement. The occlusal plane also showed minimal rotational change. Anterior occlusion was adjusted by lingual tipping of the maxillary incisors and mesial displacement and labial tipping of the mandibular incisors.

1 * Mit freundlicher Genehmigung von Verlag und Autoren. Original erschienen im Am J Orthod Dentofacial Orthop 2002; 121: 280-290.

Literatur

  • 1 Arya B S, Savara B S, Thomas D R. Prediction of first molar occlusion.  Am J Orthod. 1973;  63(6) 610-621
  • 2 Baccetti T, Franchi L, McNamara J A, Tollaro I. Early dentofacial features of Class II malocclusion: a longitudinal study from the deciduous through the mixed dentition.  Am J Orthod Dentofacial Orthop. 1997;  111(5) 502-509
  • 3 Baume L J. Physiological tooth migration and its significance for the development of occlusion, parts I, II, III, and IV.  J Dent Res. 1950;  29 123-132, 331-337, 338-348 u. 440-447
  • 4 Bishara S E, Hoppens B J, Jacobson J R, Kohout F J. Changes in the molar relationship between the deciduous and permanent dentitions: a longitudinal study.  Am J Orthod Dentofacial Orthop. 1988;  93(1) 19-28
  • 5 Bonnar E ME. Aspects of transition from deciduous to permanent dentition.  Dent Pract Dent Rec. 1953;  7 42-54
  • 6 Lundstrom A. The biology of occlusal development discussion. In: The biology of the occlusal development Center for Human Growth and Development, University of Michigan, Ann Arbor 1977: 141-145
  • 7 Bonnar E ME. Aspects of transition from deciduous to the permanent dentition, part II.  Dent Pract Dent Rec. 1960;  11 59-75
  • 8 Behrents R G. An atlas of growth in the aging craniofacial skeleton, monograph 17. Craniofacial growth series. Center for Human Growth and Development, University of Michigan, Ann Arbor 1985
  • 9 Behrents R G. An atlas of growth in the aging craniofacial skelcton, monograph 18. Craniofacial growth series. Center for Human Growth and Development, University of Michigan, Ann Arbor 1985
  • 10 Bishara S E, Jakobsen J R. Longitudinal changes in three normal facial types.  Am J Orthod Dentofacial Orthop. 1985;  88(6) 466-502
  • 11 McNamara J A. A method of cephalometric evaluation.  Am J Orthod. 1984;  86(6) 449-469
  • 12 Björk A, Skieller V. Normal and abnormal growth of the mandible: a synthesis of longitudinal cephalometric implant studies over a period of 25 years.  Eur J Orthod. 1983;  5(1) 1-46
  • 13 Björk A, Skieller V. Growth of the maxilla in three dimensions as revealed radiographically by the implant method.  Br J Orthod. 1977;  4(2) 53-64
  • 14 Björk A. Variation in the growth pattern of the human mandible.  J Dent Res. 1963;  42 400-411
  • 15 Kerr W J. A longitudinal cephalometric study of dento-facial growth from 5 to 15 years.  Br J Orthod. 1979;  6(3) 115-121
  • 16 Forsberg C M, Eliasson S, Westergren H. Face height and tooth eruption in adults - a 20-year follow-up investigation.  Eur J Orthod. 1991;  13(4) 249-254
  • 17 Riedel R A. Post pubertal occlusal change. In: The biology of the occlusal development Center for Human Growth and Development, University of Michigan, Ann Arbor 1977: 113-139
  • 18 Riolo M L, Moyers R E, McNamara J A, Hunter W S. An atlas of craniofacial growth. Center for Human Growth and Development, University of Michigan, Ann Arbor 1974
  • 19 Nanda R S. Growth changes in skeletal-facial profile and their significance in orthodontic diagnosis.  Am J Orthod. 1971;  59(5) 501-513
  • 20 Nanda R S. The rates of growth of several facial components measured from serial cephalometric roentgenograms.  Am J Orthod. 1955;  41 658-673
  • 21 Nanda R S, Merrill R M. Cephalometric assessment of sagittal relationship between maxilla and mandible.  Am J Orthod Dentofacial Orthop. 1994;  105(4) 328-344
  • 22 Nanda R S, Ghosh J. Longitudinal growth changes in the sagittal relationship of maxilla and mandible.  Am J Orthod Dentofacial Orthop. 1995;  107(1) 79-90
  • 23 Nanda R S. Craniofacial growth. University of Oklahoma, Oklahoma City 1993
  • 24 Solow B, Houston W J. Mandibular rotations: concepts and terminology.  Eur J Orthod. 1988;  10(3) 177-179
  • 25 Isaacson R J, Worms F W, Speidel T M. Measurement of tooth movement.  Am J Orthod. 1976;  70(3) 290-303
  • 26 Lebret L. Physiologic tooth migration.  J Dent Res. 1964;  43 610-618
  • 27 DeKock W H. Dental arch depth and width studied longitudinally from 12 years of age to adulthood.  Am J Orthod. 1972;  62(1) 56-66
  • 28 Moorrees C FA, Chadha J M. Available space to the incisors during dental development: a growing study based on physiologic age.  Angle Orthod. 1965;  35 12-22
  • 29 Moorrees C F, Gron A M, Lebret L M, Yen P K, Frohlich F J. Growth studies of the dentition: a review.  Am J Orthod. 1969;  55(6) 600-616
  • 30 Sanin C, Savara B S. The development of an excellent occlusion.  Am J Orthod. 1972;  61(4) 345-352
  • 31 Sillman J H. Dimensional change of dental arches: longitudinal study from birth to 25 years.  Am J Orthod. 1964;  50 824-841
  • 32 Van der Linden F P. Models in the development of the dentition. In: The biology of occlusal development Center for Human Growth and Development, University of Michigan, Ann Arbor 1977: 43-60
  • 33 Van der Linden F P. Changes in the position of posterior teeth in relation to ruga points.  Am J Orthod. 1978;  74(2) 142-161
  • 34 Van der Linden F P, Dutterloo H S. Development of the human dentition. Harper and Row, New York 1976
  • 35 Moyers R E, Wainright R L. Skeletal contributions to occlusal development. In: The biology of the occlusal development Center for Human Growth and Development, University of Michigan, Ann Arbor 1977: 89-112
  • 36 Villalobos F J, Sinha P K, Nanda R S. Longitudinal assessment of vertical and sagittal control in the mandibular arch by the mandibular fixed lingual arch.  Am J Orthod Dentofacial Orthop. 2000;  118(4) 366-370
  • 37 Taylor C M. Changes in the relationship of nasion, point A, and point B and the effect upon ANB.  Am J Orthod. 1969;  56(2) 143-163
  • 38 Baumrind S, Frantz R C. The reliability of head film measurements. 1. Landmark identification.  Am J Orthod. 1971;  60(2) 111-127
  • 39 Nanda R S, Chawla J M. Variability of leeway space.  J Indian Dent Assoc. 1973;  45(5) 99-108
  • 40 Nance H N. The limitations of orthodontic treatment. 1. Mixed dentition diagnosis and treatment.  Am J Orthod Oral Surg. 1947;  33 177-233
  • 41 Solow B. The dentoalveolar compensatory mechanism: background and clinical implications.  Br J Orthod. 1980;  7(3) 145-161
  • 42 Björk A, Skieller V. Facial development and tooth eruption: an implant study at the age of puberty.  Am J Orthod. 1972;  62(4) 339-383
  • 43 Iseri H, Solow B. Growth displacement of the maxilla in girls studied by the implant method.  Eur J Orthod. 1990;  12(4) 389-398
  • 44 Iseri H, Solow B. Continued eruption of maxillary incisors and first molars in girls from 9 to 25 years, studied by the implant method.  Eur J Orthod. 1996;  18(3) 245-256
  • 45 Tallgren A, Solow B. Age differences in adult dentoalveolar heights.  Eur J Orthod. 1991;  13(2) 149-156
  • 46 Harvold E P, Vargervik K. Morphogenetic response to activator treatment.  Am J Orthod. 1971;  60(5) 478-490
  • 47 Braun S, Legan H L. Changes in occlusion related to the cant of the occlusal plane.  Am J Orthod Dentofacial Orthop. 1997;  111(2) 184-188
  • 48 Tweed C H. Indications for extraction of teeth in orthodontic procedure.  Am J Orthod. 1964;  30 405-412

1 * Mit freundlicher Genehmigung von Verlag und Autoren. Original erschienen im Am J Orthod Dentofacial Orthop 2002; 121: 280-290.

Prof. Dr. Ram S. Nanda

Department of Orthodontics

College of Dentistry

University of Oklahoma

1001 Stanton L. Young Blvd

USA-Oklahoma City

OK 73190

Email: ram-nanda@ouhsc.edu

    >