References
<A NAME="RG30902ST-1A">1a</A>
Part
85 in the series ‘Cyclopropyl Building Blocks for Organic
Synthesis’.
<A NAME="RG30902ST-1B">1b</A>
Part 84, see: Belov,
V. N.; Savchenko, A. I.; Sokolov, V. V.; Straub, A.; de Meijere,
A. Eur. J. Org. Chem. 2003,
in press.
<A NAME="RG30902ST-1C">1c</A>
Part 83: Leonov, A.; Heiner,
T.; Bes, M. T.; de Meijere, A. Eur. J. Org.
Chem. 2003, in press.
<A NAME="RG30902ST-2A">2a</A>
Tietze LF.
Beifuss U.
Angew.
Chem., Int. Ed. Engl.
1993,
32:
131 ; Angew.
Chem.
1993,
105:
137
<A NAME="RG30902ST-2B">2b</A>
Tietze LF.
Chem. Rev.
1996,
96:
115
<A NAME="RG30902ST-2C">2c</A>
de Meijere A.
Meyer FE.
Angew. Chem., Int.
Ed. Engl.
1994,
33: 2379; Angew. Chem. 1994, 106, 2473
<A NAME="RG30902ST-3A">3a</A>
Bräse S.
de Meijere A. In Metal-catalyzed
Cross-coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
p.99
<A NAME="RG30902ST-3B">3b</A>
de Meijere A.
Bräse S.
J. Organomet. Chem.
1999,
576:
88
<A NAME="RG30902ST-3C">3c</A>
Poli G.
Giambastiani G.
Heumann A.
Tetrahedron
2000,
56:
5959
<A NAME="RG30902ST-3D">3d</A>
Winkler JD.
Chem. Rev.
1996,
96:
167
<A NAME="RG30902ST-4A">4a</A>
Grigg R.
Mariani E.
Sridharan V.
Tetrahedron Lett.
2001,
42:
8677
<A NAME="RG30902ST-4B">4b</A>
Copéret C.
Ma S.
Negishi E.-i.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
2125 ; Angew. Chem. 1996, 108, 2255
<A NAME="RG30902ST-4C">4c</A>
Yufit DS.
Kozhushkov SI.
Howard JAK.
de Meijere A.
Acta
Cryst.
2002,
B58:
673
<A NAME="RG30902ST-5A">5a</A>
Nüske H.
Bräse S.
Kozhushkov SI.
Noltemeyer M.
Es-Sayed M.
de Meijere A.
Chem.-Eur.
J.
2002,
8:
2350
<A NAME="RG30902ST-5B">5b</A>
de Meijere A.
Nüske H.
Es-Sayed M.
Labahn T.
Schroen M.
Bräse S.
Angew. Chem. Int. Ed.
1999,
38:
3669 ; Angew. Chem. 1999, 111, 3881
<A NAME="RG30902ST-6">6</A>
Nüske H.
Noltemeyer M.
de Meijere A.
Angew.
Chem. Int. Ed.
2001,
40:
3411 ; Angew. Chem.; 2001, 113: 3509
<A NAME="RG30902ST-7">7</A> 1,3-Dicyclopropyl-1,2-propadiene
was first detected and characterized by IR, 1H
NMR and mass spectroscopy, among the pyrolysis products from cyclopropylketene dimer:
Berkowitz WF.
Ozorio AA.
J. Org. Chem.
1975,
40:
527
<A NAME="RG30902ST-8A">8a</A>
Scott LT.
Cooney MJ.
Otte C.
Puls C.
Haumann T.
Boese R.
Smith AB.
Carroll PJ.
de Meijere A.
J. Am.
Chem. Soc.
1994,
116:
10275
<A NAME="RG30902ST-8B">8b</A>
Militzer H.-C.
Schömenauer S.
Otte C.
Puls C.
Hain J.
Bräse S.
de Meijere A.
Synthesis
1993,
10:
998
<A NAME="RG30902ST-8C">8c</A>
Köbrich G.
Merkel D.
Thiem K.-W.
Chem.
Ber.
1972,
105:
1683
<A NAME="RG30902ST-8D">8d</A>
Köbrich G.
Merkel D.
Angew. Chem.,
Int. Ed. Engl.
1970,
9:
169 ; Angew. Chem. 1970, 82, 257
<A NAME="RG30902ST-9">9</A>
Kazimirchik IV.
Lukin KA.
Bebikh GF.
Zefirov NS.
J.
Org. Chem. USSR
1983,
19:
2209 ; Zh. Org. Khim. 1983, 19, 2523
<A NAME="RG30902ST-10">10</A>
Sato F.
Ishikawa H.
Sato M.
Tetrahedron
Lett.
1981,
22:
85
<A NAME="RG30902ST-11">11</A> Best yields of 3 were
achieved according to the most recently published protocol employing
powdered sodium hydroxide:
Xu L.
Brinker UH. In
Synthetic
Organic Sonochemistry
Lucke JL.
Plenum
Press;
New York:
1998.
p.344
<A NAME="RG30902ST-12">12</A>
Dimethyl 3-[(2′-Cyclopropyl-1′-phenyl)ethenyl]cyclo-hex-4-en-(
E
)-1,2-dicarboxylate
(
5a). Typical
Procedure: A solution of 11.2 mg (50.0 µmol, 5 mol%)
of palladium(II) acetate and 39.3 mg (150 µmol) of triphenylphosphine
in 1 mL of anhyd DMF in a 5 mL Pyrex-screw-cap bottle is flushed
with nitrogen for 10 min. A mixture of 120 mg
(1.00 mol)
of 1,3-dicyclopropyl-1,2-propadiene, 245 mg (1.20 mmol) of phenyl
iodide, 202 mg (2.00 mmol) of triethylamine and 288 mg (2.00 mmol)
of dimethyl maleate are added and the mixture is stirred under nitrogen
in the capped bottle at 100 °C for 24 h. The reaction
is quenched by addition of 10 mL of water, and the mixture is extracted
with diethyl ether (4 × 10 mL). The combined
organic layers are washed with water (3 × 25 mL)
and brine (25 mL). The solution is dried (MgSO4), the
solvent removed, and the residue purified by chromatography on 60
g of silica gel [pentane-diethyl ether (10:1), R
f = 0.10] to
yield 293 mg (86%) of 5a. IR (KBr): ν = 2982,
2873, 1746, 1492, 1383, 1249, 1125, 1077, 953, 845, 763, 702 cm-1. 1H
NMR (600 MHz, CDCl3): δ = 0.21-0.27
(m, 2 H, cPr-H), 0.56 (ddd, 3
J = 8.2,
2.4 Hz, 2
J = 0.6 Hz, 2 H, cPr-H), 1.17 (m, 1 H, cPr-H),
2.10 (m, 1 H, 6-H), 2.27 (m, 1 H, 6-H), 2.69 (dd, 3
J = 10.9,
10.1 Hz, 1 H, 2-H), 2.94 (dt, 3
J = 10.9, 5.4 Hz, 1 H,
1-H), 3.37 (ddd, 3
J = 10.1, 3.9 Hz, 4
J = 2.0
Hz, 1 H, 3-H), 3.57 (s, 3 H, OCH3), 3.60 (s, 3 H, OCH3),
4.81 (d, 3
J = 9.9 Hz, 1 H, 2′-H), 5.64 (m, 2 H, 4-H, 5-H),
7.14-7.32 (m, 5 H, Ph-H). 13C
NMR (62.9 MHz, CDCl3): δ = 7.3
(CH2, cPr-C), 11.1
(CH, cPr-C),
27.2 (CH2, C-6), 42.1 (CH, C-1), 46.6 (CH,
C-2), 48.5 (CH, C-3), 51.5 (CH3, OCH3), 51.9
(CH3, OCH3), 124.6
(CH, C-5), 126.7 (CH,
Ph-C), 127.8 (CH, Ph-C), 129.6 (CH, C-4), 129.7 (CH,
Ph-C), 135.2 (CH, C-2′), 138.6
(C
quat, Ph-C), 139.2 (C
quat, C-1′),
174.4 (C
quat, COO), 175.1
(C
quat, COO). MS (EI, 70 eV): m/z (%) = 341/340
(8/38) [M+], 309(20),
280(100), 249(39), 221(61), 205(33), 193(28), 167(29), 143(70),
128(34), 115(24), 91(43), 77(8), 59(12), 41(4). Calcd. for C21H24O4 (340.4):
C, 74.09; H, 7.11. Found: C, 74.34; H, 6.94.
<A NAME="RG30902ST-13A">13a</A>
Stepwise
proceeding Diels-Alder reactions have been predicted according
to computations and also been observed experimentally.
<A NAME="RG30902ST-13B">13b</A>
Dewar MJS.
Olivella S.
Stewart JJP.
J. Am. Chem. Soc.
1986,
108:
5771
<A NAME="RG30902ST-13C">13c</A>
Goldstein E.
Beno B.
Houk KN.
J.
Am. Chem. Soc.
1996,
118:
6036
<A NAME="RG30902ST-14">14</A> The isomerization of dimethyl maleate
to dimethyl fumarate under Heck coupling conditions has previously
been documented:
Cortese NA.
Ziegler CB.
Hrnjez BJ.
Heck RF.
J. Org. Chem.
1978,
43:
2952
<A NAME="RG30902ST-15">15</A>
A control experiment which was carried
out with the isolated hexatriene 7 and
dimethyl maleate in 5 mL DMSO at 100 °C for 18
h in the absence of any base and palladium catalyst, gave the same
product 5a as a mixture of diastereoisomers (2.3:1)
in 36% yield.
<A NAME="RG30902ST-16">16</A>
All new compounds were fully characterized
by spectroscopic methods (1H NMR, 13C
NMR, IR, MS) and bulk purities were established for most of them
by elemental analysis.
<A NAME="RG30902ST-17">17</A>
Typical Two-step
Procedure: A solution of 11.2 mg (50.0 µmol, 5 mol%)
of palladium(II) acetate and 39.3 mg (150 µmol) of triphenylphosphine
in 1 mL of anhyd DMF in a 5 mL Pyrex-screw-cap bottle is flushed
with nitrogen for 10 min. 120 mg (1.00 mol) of 1,3-dicyclopropyl-1,2-propadiene,
1.20 mmol of the aryl iodide and 202 mg (2.00 mmol) of triethylamine
are added, and the mixture is stirred at 80 °C
for 5 h. Then 2 mmol of the dienophile is added and the mixture
is stirred at 100 °C for 18 h. The reaction is quenched
by addition of 10 mL of water, and the mixture extracted with diethyl
ether (3 × 10 mL). The combined organic
layers are washed with water (2 × 25 mL)
and brine (25 mL). After drying (MgSO4), the solvent
is removed and the residue purified by chromatography.
The facile oxidation of Diels-Alder
adducts with p-benzoquinone is well documented:
<A NAME="RG30902ST-18A">18a</A>
Ansell MF.
Nash BW.
Wilson DA.
J. Chem. Soc.
1963,
3006
<A NAME="RG30902ST-18B">18b</A>
Willmore ND.
Longbin L.
Katz TJ.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1093 ; Angew. Chem. 1992, 104, 1081