References
<A NAME="RG33502ST-1">1</A>
Schade W.
Reissig H.-U.
Synlett
1999,
632
<A NAME="RG33502ST-2">2</A> Synthesis:
Dondoni A.
Franco S.
Junquera F.
Merchan FL.
Merino P.
Tejero T.
Synth. Commun.
1994,
24:
2537
<A NAME="RG33502ST-3">3</A>
Pulz R.
Watanabe T.
Schade W.
Reissig H.-U.
Synlett
2000,
983 ;
and references cited herein
<A NAME="RG33502ST-4">4</A>
Pulz R.
Al-Harrasi A.
Reissig H.-U.
Synlett
2002,
817
<A NAME="RG33502ST-5">5</A>
Pulz R.
Al-Harrasi A.
Reissig H.-U.
Org.
Lett.
2002,
4:
2353
<A NAME="RG33502ST-6A">6a</A>
Wong C.-H.
Halcomb RL.
Ichikawa Y.
Kajimoto T.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
412 ; Angew. Chem. 1995, 107, 453
<A NAME="RG33502ST-6B">6b</A>
Wong C.-H.
Halcomb RL.
Ichikawa Y.
Kajimoto T.
Angew. Chem., Int. Ed. Engl.
1995,
34:
521 ; Angew. Chem. 1995, 107, 569
<A NAME="RG33502ST-6C">6c</A>
Iminosugars
as Glycosidase Inhibitors
Stütz AE.
Wiley-VCH;
Weinheim:
1999.
<A NAME="RG33502ST-6D">6d</A>
Heightman TD.
Vasella AT.
Angew.
Chem. Int. Ed.
1999,
38:
750 ; Angew. Chem. 1999, 111, 794
<A NAME="RG33502ST-6E">6e</A>
Asano N.
Nash RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron:
Asymmetry
2000,
11:
1645
<A NAME="RG33502ST-6F">6f</A>
Lillelund VH.
Jensen HH.
Liang X.
Bols M.
Chem. Rev.
2002,
102:
515
<A NAME="RG33502ST-6G">6g</A>
Gerber-Lemaire S.
Popowycz F.
Rodríguez-García E.
Asenjo ATC.
Robina I.
Vogel P.
ChemBioChem
2002,
3:
466
<A NAME="RG33502ST-7">7</A>
Pulz R.
Schade W.
Reissig H.-U.
Rademacher O.
Z. Kristallogr. NCS
2000,
215:
73
<A NAME="RG33502ST-8">8</A>
Ballestri M.
Chatgilialoglu C.
Clark KB.
Griller D.
Giese B.
Kopping B.
J. Org. Chem.
1991,
56:
678
<A NAME="RG33502ST-9">9</A> Dehalogenation of α-halo
ketones with Raney nickel:
Barrero AF.
Alvarez-Manzaneda EJ.
Chahboun R.
Meneses R.
Romera JL.
Synlett
2001,
485
<A NAME="RG33502ST-10">10</A>
Keck GE.
McHardy SF.
Wager TT.
Tetrahedron Lett.
1995,
36:
7419
<A NAME="RG33502ST-11">11</A>
13% of starting material 5 have been isolated.
<A NAME="RG33502ST-12">12</A>
With 2a this
procedure led to the formation of a 1:1 mixture of diastereomeric
azido oxazinones. Apparently, epimerization either of 2a or the resulting azido oxazinone is considerably
faster here.
<A NAME="RG33502ST-13">13</A>
As a side product 8% of the
N,O-diprotected 1,2-oxazine were obtained.
<A NAME="RG33502ST-14">14</A>
Ariza X.
Urpi F.
Viladomat C.
Vilarrasa J.
Tetrahedron Lett.
1998,
39:
9101
<A NAME="RG33502ST-15">15</A>
Correct spectroscopical data were
obtained for all new compounds. Correct elemental analysis was achieved
for all stable compounds.
<A NAME="RG33502ST-16">16</A>
Typical Procedure, anti
-1 to 3a: To
a solution of NBS (0.222 g, 1.25 mmol) in CH3CN (13 mL)
and H2O (0.8 mL) a solution of anti-1 (0.382 g, 1.25 mmol) in CH3CN
(3 mL) was added at -40 °C. The mixture
was stirred for 1 h at this temperature and then warmed up to r.t.
After quenching with H2O the solution was extracted with
Et2O and the combined extracts were dried with MgSO4.
After removal of the solvent the crude mixture was dissolved in n-hexane and the insoluble N-succinimide was separated by filtration.
After evaporating the solvent 3a (dr 93:7,
0.450 g, 97%) was obtained. Recrystalization with n-hexane led to diastereo-merically pure 3a as colorless crystals (mp 53-60 °C).
Analytical
data of (3R,5R,4′S)-2-Benzyl-5-bromo-3-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-tetrahydro-1,2-oxazin-4-one
(3a): [α]D
20 +46.0
(c 2.3, CHCl3). 1H
NMR (CDCl3, 500 MHz): δ = 7.36-7.26
(m, 5 H, Ph), 4.95 (dt, J = 2.9,
7.5 Hz, 1 H, 4′-H), 4.52, 3.76 (2 d, J = 14.6
Hz, 1 H each, CH2Ph), 4.50 (tbrdbr, J ≈ 0.7 Hz, 8.0 Hz, 1 H, 5-H),
4.41 (dbrd, J ≈ 7.5, 11.2
Hz, 1 H, 6-HA), 4.19 (dd, J = 8.8.
11.2 Hz, 1 H, 6-HB), 4.13 (mc, 2 H, 5′-H),
4.03 (dd, J = 0.6,
2.9 Hz, 1 H, 3-H), 1.42, 1.34 (2 s, 3 H each, Me). 13C
NMR (CDCl3, 75.5 MHz): δ = 196.2
(s, C-4), 136.9, 128.6, 128.5, 127.3 (s, 3 d, Ph), 108.9 (s, C-2′),
74.8 (d, C-3), 74.1 (d, C-4′), 73.8 (t, C-6), 64.7 (t,
C-5′), 60.7 (t, CH2Ph), 46.6 (d, C-5), 26.0,
24.0 (2 q, Me). IR (gas phase): ν = 2990-2890
(C-H), 1750 (C=O)
cm-1.
MS (EI, 70 eV): m/z (%) = 356
(1) [M+ - 14], 290
(1) [M+ - Br], 271,
269 (5 each), 190 (62), 101 (24), 91 (100) [CH2Ph],
43(45) [C3H7]. C16H20BrNO4 (370.2):
Calcd C, 51.90; H, 5.44; N, 3.78. Found: C, 51.88; H, 5.46; N 3.84.
Typical Procedure, 3a to 10:
To a solution of 3a (0.555 g, 1.50 mmol)
in CH2Cl2 (4 mL) and H2O (2 mL)
NaN3 (0.487 g, 7.50 mmol) and Me(Oct)3NCl
(15 mg) were added. The mixture was stirred for 3 d at r.t., the
layers were separated and the organic layer was washed with H2O.
After drying with MgSO4 the solvent was evaporated yielding spectroscopically
pure 10 (dr = 92:8,
0.500 g, quant.) as viscose brown oil.
Analytical data
of (3R,5S,4′S)-5-Azido-2-benzyl-3-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-3,4,5,6-tetrahydro-2H-1,2-oxazin-4-one (10): 1H
NMR (CDCl3, 500 MHz): δ = 7.38-7.27
(m, 5 H, Ph), 4.59-4.56 (m, 1 H, 4′-H), 4.55 (t, J = 8.7 Hz,
1 H, 5-H), 4.43 (dd, J = 8.7,
10.6 Hz, 1 H, 6-HA), 4.13 (dd, J = 6.2,
8.4 Hz, 1-H, 5′-HA), 4.12, 3.80 (2 d, J = 13.9 Hz,
1 H each, CH2Ph), 3.92 (dd, J = 7.1,
8.4 Hz, 1 H, 5′-HB), 3.74 (dd, J = 8.7,
10.6 Hz, 1 H, 6-HB), 3.53 (d, J = 3.9
Hz, 1 H, 3-H), 1.35, 1.33 (2 s, 3 H each, Me). 13C
NMR (CDCl3, 125 MHz): δ = 200.3
(s, C-4), 135.4, 128.7, 128.4, 127.8 (s, 3 d, Ph), 110.4 (s, C-2′),
75.1 (d, C-3), 72.2 (d, C-4′), 70.8 (t, C-6), 67.4 (t,
C-5′), 62.6 (d, C-5), 58.9 (t, CH2Ph), 25.9,
25.6 (2 q, Me). IR (CCl4): ν = 2990-2890
(C-H), 2120 (N3), 1740 (C=O) cm-1.
According to 1H NMR and
¹³
C NMR purity >95%.