Int J Sports Med 2003; 24(2): 108-113
DOI: 10.1055/s-2003-38201
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Differences in Lactate Exchange and Removal Abilities in Athletes Specialised in Different Track Running Events (100 to 1500 m)

C.  Bret1, 2 , L.  Messonnier1-3 , J.  M.  Nouck Nouck1 , H.  Freund4 , A.  B.  Dufour5 , J.  R.  Lacour1
  • 1Laboratoire de Physiologie de l'Exercice, GIP Exercice - EA 645, Faculté de Médecine Lyon-Sud, Oullins Cedex, France.
  • 2Centre de Recherche et d'Innovation sur le Sport (CRIS), UFR STAPS, Université Claude Bernard - Lyon 1, Villeurbanne Cedex, France.
  • 3Laboratoire de Modélisation des Activités Sportives, Département STAPS - UFR CISM, Campus Universitaire, Le Bourget du Lac Cedex, France.
  • 4Laboratoire de Pharmacologie et de Physiopathologie Cellulaires, Faculté de Pharmacie. UMR CNRS 7034, Illkirch, France.
  • 5Laboratoire de Biométrie et de Biologie Evolutive, Université Claude Bernard - Lyon 1, UMR - CNRS 5558, Villeurbanne, France.
Further Information

Publication History



Accepted after revision: July 25, 2002

Publication Date:
01 April 2003 (online)

Abstract

The purpose of this study was to investigate whether track running specialisation could be associated with differences in the ability to exchange and remove lactate. Thirty-four male high-level runners were divided into two groups according to their speciality (100 - 400 m/800 - 1500 m). All performed a 1-min 25.2 km × h-1 event, followed by a 90-min passive recovery to obtain individual blood lactate recovery curves which were fitted to a bi-exponential time function:
[La](t) = [La](0) + A1(1-e1t) + A2(1-e2t).
The velocity constant γ1 which denotes the ability to exchange lactate between the previously worked muscles and blood was higher (p < 0.001) in middle-distance runners than in sprint runners. The velocity constant γ2 which reflects the overall ability to remove lactate did not differ significantly between the two groups. γ1 was positively correlated with the best performance over 800 m achieved by 16 athletes during the outdoor track season following the protocol (r = 0.55, p < 0.05). In conclusion, the lactate exchange ability seems to play a role on the athlete's capacity to sustain exercise close to 2-min-duration and specifically to run 800 m.

References

  • 1 Åstrand P O, Hultman E, Juhlin-Dannfelt A, Reynolds G. Disposal of lactate during and after strenuous exercise in humans.  J Appl Physiol. 1986;  61 338-343
  • 2 Bangsbo J, Gollnick P D, Graham T E, Saltin B. Substrates for muscle glycogen synthesis in recovery from intense exercise in man.  J Physiol. 1991;  434 423-440
  • 3 Bonen A, McDermott J C, Tan M H. Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones.  Am J Physiol. 1990;  258 693-700
  • 4 Bret C, Rahmani A, Messonnier L, Bourdin M, Bedu E, Lacour J R. Relation entre la concentration sanguine de lactate mesurée en fin de compétition et la performance sur 100 m.  Sci Mot. 2001;  42 24-28
  • 5 Brooks G A. The lactate shuttle during exercise and recovery.  Med Sci Sports Exerc. 1986;  18 360-368
  • 6 Costill D L, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B. Skeletal muscle enzymes and fiber composition in male and female track athletes.  J Appl Physiol. 1976;  40 149-154
  • 7 Donovan C M, Pagliassotti M J. Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types.  Med Sci Sports Exerc. 2000;  32 772-777
  • 8 Fitts R H. Cellular mechanisms of muscle fatigue.  Physiol Rev. 1994;  74 49-94
  • 9 Francaux M, Jacqmin P, Michotte de Welle J, Sturbois X. A study of lactate metabolism without tracer during passive and active postexercise recovery in humans.  Eur J Appl Physiol. 1995;  72 58-66
  • 10 Freund H, Oyono-Enguéllé S, Heitz A, Marbach J, Ott C, Zouloumian P, Lampert E. Work rate-dependant lactate kinetics after exercise in humans.  J Appl Physiol. 1986;  61 932-939
  • 11 Freund H, Oyono-Enguéllé S, Heitz A, Marbach J, Ott C, Gartner M. Effect of exercise duration on lactate kinetics after short muscular exercise.  Eur J Appl Physiol. 1989;  58 534-542
  • 12 Freund H, Zouloumian P. Lactate after exercise in man: I. Evolution kinetics in arterial blood.  Eur J Appl Physiol. 1981;  46 121-133
  • 13 Fujitsuka N, Yamamoto T, Ohkuwa T, Saito M, Miyamura M. Peak blood lactate after short periods of maximal treadmill running.  Eur J Appl Physiol. 1982;  48 289-296
  • 14 Hermansen L, Osnes J B. Blood and muscle pH after maximal exercise in man.  J Appl Physiol. 1972;  32 304-308
  • 15 Hermansen L, Vaage O. Lactate disappearance and glycogen synthesis in human muscle after maximal exercise.  Am J Physiol. 1977;  233 422-429
  • 16 Hirche H, Hombach V, Langohr H D, Wacker U, Busse J. Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis.  Pflügers Arch. 1975;  356 209-222
  • 17 Juel C. Muscle lactate transport studied in sarcolemmal giant vesicles.  Biochem Biophys Acta. 1991;  1065 15-20
  • 18 Juel C. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis.  Acta Physiol Scand. 1996;  156 369-374
  • 19 Juel C. Lactate-proton cotransport in skeletal muscle.  Physiol Rev. 1997;  77 321-358
  • 20 Kirkendall D T. Mechanisms of peripheral fatigue.  Med Sci Sports Exerc. 1990;  22 444-449
  • 21 Lacour J R, Bouvat E, Barthélémy J C. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races.  Eur J Appl Physiol. 1990;  61 172-176
  • 22 Lacour J R, Padilla-Magunacelaya S, Barthelemy J C, Dormois D. The energetics of middle-distance running.  Eur J Appl Physiol. 1990;  60 38-43
  • 23 Mainwood G W, Renaud J M. The effect of acid-base balance on fatigue of skeletal muscle.  Can J Physiol Pharmacol. 1985;  63 403-416
  • 24 Mainwood G W, Worsley-Brown P. The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle.  J Physiol. 1975;  250 1-22
  • 25 McNaughton L, Cedaro R. Sodium citrate ingestion and its effects on maximal anaerobic exercise of different durations.  Eur J Appl Physiol. 1992;  64 36-41
  • 26 Medbø J I, Mohn A C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 27 Messonnier L, Freund H, Bourdin M, Belli A, Lacour J R. Lactate exchange and removal abilities in rowing performance.  Med Sci Sports Exerc. 1997;  29 396-401
  • 28 Messonnier L, Freund H, Denis C, Dormois D, Dufour A B, Lacour J R. Time to exhaustion at V˙O2max is related to the lactate exchange and removal abilities.  Int J Sports Med. 2002;  23 433-438
  • 29 Messonnier L, Freund H, Féasson L, Prieur F, Castells J, Denis C, Linossier M T, Geyssant A, Lacour J R. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia.  Eur J Appl Physiol. 2001;  84 403-412
  • 30 Oyono-Enguéllé S, Gartner M, Marbach J, Heitz A, Ott C, Freund H. Comparison of arterial and venous blood lactate kinetics after short exercise.  Int J Sports Med. 1989;  10 16-24
  • 31 Pagliassotti M J, Donovan C M. Role of cell type in net lactate removal by skeletal muscle.  Am J Physiol. 1990;  258 635-642
  • 32 Pilegaard H, Bangsbo J, Richter E A, Juel C. Lactate transport studied in sarcolemmal giant vesicles from human biopsies: relation to training status.  J Appl Physiol. 1994;  77 1858-1862
  • 33 Pilegaard H, Terzis G, Halestrap A, Juel C. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle.  Am J Physiol. 1999;  276 843-848
  • 34 Saltin B. Anaerobic capacity: past, present and prospective. In: Taylor AW, Gollnick PD, Green HJ, Januzzo CD, Noble EG, Metivier G, Sutton JR (eds) Biochemistry of exercise VII. Champaign,. Il Human Kinetics 1990: 387-412
  • 35 Shephard R J. Maximal oxygen intake. In: Shephard RJ, Åstrand PO (eds) In: Endurance in Sport. Oxford; Blackwell Scientific 1992: 192-200
  • 36 Spencer M R, Gastin P B. Energy system contribution during 200- to 1500-m running in highly trained athletes.  Med Sci Sports Exerc. 2001;  33 157-162
  • 37 Taoutaou Z, Granier P, Mercier B, Mercier J, Ahmaidi S, Prefaut C. Lactate kinetics during passive and partially active recovery in endurance and sprint athletes.  Eur J Appl Physiol. 1996;  73 465-470
  • 38 Tesch P A, Wright J E. Recovery from short term intense exercise: its relation to capillary supply and blood lactate concentration.  Eur J Appl Physiol. 1983;  52 98-103
  • 39 Vøllestad N K, Blom P C, Gronnerod O. Resynthesis of glycogen in different muscle fibre types after prolonged exhaustive exercise in man.  Acta Physiol Scand. 1989;  137 15-21
  • 40 Zouloumian P, Freund H. Lactate after exercise in man: III. Properties of the compartment model.  Eur J Appl Physiol. 1981;  46 149-160

C. Bret

Laboratoire de Physiologie de l'Exercice · GIP Exercice · Faculté de Médecine Lyon Sud

Chemin du petit Revoyet BP 12 · 69 921 Oullins Cedex · France ·

Phone: (33) 4-78-86-31-35

Fax: (33) 4-78-86-31-35

Email: cbret@univ-lyon1.fr

    >