Semin Vasc Med 2003; 03(1): 003-012
DOI: 10.1055/s-2003-38328
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Basic Mechanisms of Hemostasis

Kristin M. Seré, Tilman M. Hackeng
  • Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands
Further Information

Publication History

Publication Date:
27 March 2003 (online)

ABSTRACT

Hemostasis governs two essential processes of human life in that it maintains the fluidity of blood under physiological conditions and prevents excessive blood loss after injury. Hemostasis is regulated by components of the vessel wall and blood cells and by humoral coagulation factors. Under normal conditions, these components are involved in an active equilibrium through activation, propagation, and termination of the hemostatic pathways. This equilibrium is disturbed upon vascular injury, leading to a procoagulant response when needed. Unfortunately, pathological disturbances can occur as a result of inherited or acquired coagulation factor deficiencies that may lead to bleeding or thrombotic disorders.

REFERENCES

  • 1 Clemetson K J, Clemetson J M. Platelet collagen receptors.  Thromb Haemost . 2001;  86 189-197
  • 2 Lopez J A, Chung D W, Fujikawa K. et al . The alpha and beta chains of human platelet glycoprotein Ib are both transmembrane proteins containing a leucine-rich amino acid sequence.  Proc Natl Acad Sci U S A . 1988;  85 2135-2139
  • 3 Nieswandt B, Brakebusch C, Bergmeier W. et al . Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen.  EMBO J . 2001;  20 2120-2130
  • 4 Ruggeri Z M. Structure and function of von Willebrand factor.  Thromb Haemost . 1999;  82 576-584
  • 5 Sakariassen K S, Bolhuis P A, Sixma J J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to the subendothelium.  Nature . 1979;  279 636-638
  • 6 Nurden A T, Caen J P. Specific roles for platelet surface glycoproteins in platelet function.  Nature . 1975;  255 720-722
  • 7 Huizinga E G, Tsuji S, Romijn R A. et al . Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain.  Science . 2002;  297 1176-1179
  • 8 Sims P J, Ginsberg M H, Plow E F, Shattil S J. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex.  J Biol Chem . 1991;  266 7345-7352
  • 9 Heemskerk J W, Bevers E M, Lindhout T. Platelet activation and blood coagulation.  Thromb Haemost . 2002;  88 186-193
  • 10 MacFarlane R G. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier.  Nature . 1964;  202 498-499
  • 11 Davie E W, Ratnoff O D. Waterfall sequence for intrinsic blood clotting.  Science . 1964;  145 1310-1312
  • 12 Morrissey J H, Macik B G, Neuenschwander P F, Comp P C. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation.  Blood . 1993;  81 734-744
  • 13 Gailani D, Broze Jr J G. Factor XI activation in a revised model of blood coagulation.  Science . 1991;  253 909-912
  • 14 Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces.  J Biol Chem . 1991;  266 7353-7358
  • 15 von dem Borne A P, Koppelman S J, Bouma B N, Meijers J C. Surface independent factor XI activation by thrombin in the presence of high molecular weight kininogen.  Thromb Haemost . 1994;  72 397-402
  • 16 Osterud B, Rapaport S I. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation.  Proc Natl Acad Sci U S A . 1977;  74 5260-5264
  • 17 Broze Jr J G. Tissue factor pathway inhibitor and the revised theory of coagulation.  Annu Rev Med . 1995;  46 103-112
  • 18 Bajzar L, Manuel R, Nesheim M E. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor.  J Biol Chem . 1995;  270 14477-14484
  • 19 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex.  J Biol Chem . 1996;  271 16603-16608
  • 20 Bouma B N, Marx P F, Mosnier L O, Meijers J C. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U).  Thromb Res . 2001;  101 329-354
  • 21 Lorand L, Konishi K. Activation of the fibrin stabilizing factor of plasma by thrombin.  Arch Biochem Biophys . 1964;  105 58
  • 22 Ichinose A. Physiopathology and regulation of factor XIII.  Thromb Haemost . 2001;  86 57-65
  • 23 Rosenberg R D, Damus P S. The purification and mechanism of action of human antithrombin-heparin cofactor.  J Biol Chem . 1973;  248 6490-6505
  • 24 Bjork I, Olson S T. Antithrombin. A bloody important serpin.  Adv Exp Med Biol . 1997;  425 17-33
  • 25 Tollefsen D M, Majerus D W, Blank M K. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma.  J Biol Chem . 1982;  257 2162-2169
  • 26 Tollefsen D M. Heparin cofactor II.  Adv Exp Med Biol . 1997;  425 35-44
  • 27 Scott C F, Schapira M, James H L, Cohen A B, Colman R W. Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen.  J Clin Invest . 1982;  69 844-852
  • 28 Pizzo S V, Wu S W. Alpha-macroglobulins and kunins. In: Colman RW, Hirsh J, Marder VJ, et al, eds. Haemostasis and Thrombosis, 4th ed Philadelphia: Lippincott, Williams & Williams 2001: 367-379
  • 29 Marcum J A, Atha D H, Fritze L M. et al . Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan.  J Biol Chem . 1986;  261 7507-7517
  • 30 Broze Jr J G. Tissue factor pathway inhibitor.  Thromb Haemost . 1995;  74 90-93
  • 31 Girard T J, Warren L A, Novotny W F. et al . Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor.  Nature . 1989;  338 518-520
  • 32 Novotny W F, Brown S G, Miletich J P, Rader D J, Broze Jr J G. Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples.  Blood . 1991;  78 387-393
  • 33 Novotny W F, Palmier M, Wun T C, Broze Jr J G, Miletich J P. Purification and properties of heparin-releasable lipoprotein-associated coagulation inhibitor.  Blood . 1991;  78 394-400
  • 34 Valentin S, Larnkjer A, Ostergaard P, Nielsen J I, Nordfang O. Characterization of the binding between tissue factor pathway inhibitor and glycosaminoglycans.  Thromb Res . 1994;  75 173-183
  • 35 Esmon C. The protein C pathway.  Crit Care Med . 2000;  28 S44-S48
  • 36 Esmon C T, Owen W G. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C.  Proc Natl Acad Sci U S A . 1981;  78 2249-2252
  • 37 Ye J, Rezaie A R, Esmon C T. Glycosaminoglycan contributions to both protein C activation and thrombin inhibition involve a common arginine-rich site in thrombin that includes residues arginine 93, 97, and 101.  J Biol Chem . 1994;  269 17965-17970
  • 38 Tsiang M, Lentz S R, Sadler J E. Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity.  J Biol Chem . 1992;  267 6164-6170
  • 39 Stearns D J, Kurosawa S, Esmon C T. Microthrombomodulin. Residues 310-486 from the epidermal growth factor precursor homology domain of thrombomodulin will accelerate protein C activation.  J Biol Chem . 1989;  264 3352-3356
  • 40 Suzuki K, Hayashi T, Nishioka J. et al . A domain composed of epidermal growth factor-like structures of human thrombomodulin is essential for thrombin binding and for protein C activation.  J Biol Chem . 1989;  264 4872-4876
  • 41 Esmon N L, Owen W G, Esmon C T. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C.  J Biol Chem . 1982;  257 859-864
  • 42 Esmon C T, Esmon N L, Harris K W. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation.  J Biol Chem . 1982;  257 7944-7947
  • 43 Rezaie A R, He X, Esmon C T. Thrombomodulin increases the rate of thrombin inhibition by BPTI.  Biochemistry . 1998;  37 693-699
  • 44 Rezaie A R, Cooper S T, Church F C, Esmon C T. Protein C inhibitor is a potent inhibitor of the thrombin-thrombomodulin complex.  J Biol Chem . 1995;  270 25336-25339
  • 45 Okajima K, Koga S, Kaji M. et al . Effect of protein C and activated protein C on coagulation and fibrinolysis in normal human subjects.  Thromb Haemost . 1990;  63 48-53
  • 46 Hackeng T M, Tans G, Koppelman S J. et al . Protein C activation on endothelial cells by prothrombin activation products generated in situ: meizothrombin is a better protein C activator than alpha-thrombin.  Biochem J . 1996;  319(Pt 2) 399-405
  • 47 Cote H C, Bajzar L, Stevens W K. et al . Functional characterization of recombinant human meizothrombin and meizothrombin(desF1). Thrombomodulin-dependent activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI), platelet aggregation, antithrombin-III inhibition.  J Biol Chem . 1997;  272 6194-6200
  • 48 Suzuki K, Nishioka J, Hashimoto S. Protein C inhibitor. Purification from human plasma and characterization.  J Biol Chem . 1983;  258 163-168
  • 49 Elisen M G, von dem Borne A P, Bouma B N, Meijers J C. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma.  Blood . 1998;  91 1542-1547
  • 50 Fukudome K, Esmon C T. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor.  J Biol Chem . 1994;  269 26486-26491
  • 51 Stearns-Kurosawa D J, Kurosawa S, Mollica J S, Ferrell G L, Esmon C T. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex.  Proc Natl Acad Sci U S A . 1996;  93 10212-10216
  • 52 Laszik Z, Mitro A, Taylor Jr B F, Ferrell G, Esmon C T. Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway.  Circulation . 1997;  96 3633-3640
  • 53 Riewald M, Petrovan R J, Donner A, Mueller B M, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway.  Science . 2002;  296 1880-1882
  • 54 Joyce D E, Gelbert L, Ciaccia A, DeHoff B, Grinnell B W. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis.  J Biol Chem . 2001;  276 11199-11203
  • 55 Kisiel W, Canfield W M, Ericsson L H, Davie E W. Anticoagulant properties of bovine plasma protein C following activation by thrombin.  Biochemistry . 1977;  16 5824-5831
  • 56 Marlar R A, Kleiss A J, Griffin J H. Human protein C: inactivation of factors V and VIII in plasma by the activated molecule.  Ann N Y Acad Sci . 1981;  370 303-310
  • 57 Walker F J. Regulation of activated protein C by protein S. The role of phospholipid in factor Va inactivation.  J Biol Chem . 1981;  256 11128-11131
  • 58 Nicolaes G A, Tans G, Thomassen M C. et al . Peptide bond cleavages and loss of functional activity during inactivation of factor Va and factor VaR506Q by activated protein C.  J Biol Chem . 1995;  270 21158-21166
  • 59 Solymoss S, Tucker M M, Tracy P B. Kinetics of inactivation of membrane-bound factor Va by activated protein C. Protein S modulates factor Xa protection.  J Biol Chem . 1988;  263 14884-14890
  • 60 Rosing J, Hoekema L, Nicolaes G A. et al . Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor VaR506Q by activated protein C.  J Biol Chem . 1995;  270 27852-27858
  • 61 Kalafatis M, Bertina R M, Rand M D, Mann K G. Characterization of the molecular defect in factor VR506Q.  J Biol Chem . 1995;  270 4053-4057
  • 62 Eaton D, Rodriguez H, Vehar G A. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity.  Biochemistry . 1986;  25 505-512
  • 63 Fay P J, Smudzin T M, Walker F J. Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity.  J Biol Chem . 1991;  266 20139-20145
  • 64 Jesty J. Analysis of the generation and inhibition of factor Xa. Area under generation curves is independent of enzyme generation rate.  J Biol Chem . 1990;  265 17539-17544
  • 65 Fay P J, Smudzin T M. Characterization of the interaction between the A2 subunit and A1/A3-C1-C2 dimer in human factor VIIIa.  J Biol Chem . 1992;  267 13246-13250
  • 66 Dahlback B, Carlsson M, Svensson P J. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C.  Proc Natl Acad Sci U S A . 1993;  90 1004-1008
  • 67 Bertina R M, Koeleman B P, Koster T. et al . Mutation in blood coagulation factor V associated with resistance to activated protein C.  Nature . 1994;  369 64-67
  • 68 Voorberg J, Roelse J, Koopman R. et al . Association of idiopathic venous thromboembolism with single point-mutation at Arg506 of factor V.  Lancet . 1994;  343 1535-1536
  • 69 Greengard J S, Sun X, Xu X. et al . Activated protein C resistance caused by Arg506Gln mutation in factor Va.  Lancet . 1994;  343 1361-1362
  • 70 Koster T, Rosendaal F R, de Ronde H. et al . Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study.  Lancet . 1993;  342 1503-1506
  • 71 Ridker P M, Hennekens C H, Lindpaintner K. et al . Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men.  N Engl J Med . 1995;  332 912-917
  • 72 Collen D. The plasminogen (fibrinolytic) system.  Thromb Haemost . 1999;  82 259-270
  • 73 Lucas M A, Fretto L J, McKee P A. The binding of human plasminogen to fibrin and fibrinogen.  J Biol Chem . 1983;  258 4249-4256
  • 74 Suenson E, Lutzen O, Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis.  Eur J Biochem . 1984;  140 513-522
  • 75 Wiman B, Lijnen H R, Collen D. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen.  Biochim Biophys Acta . 1979;  579 142-154
  • 76 Fowkes F G, Lowe G D, Housley E. et al . Cross-linked fibrin degradation products, progression of peripheral arterial disease, and risk of coronary heart disease.  Lancet . 1993;  342 84-86
  • 77 Ridker P M, Hennekens C H, Cerskus A, Stampfer M J. Plasma concentration of cross-linked fibrin degradation product (D-dimer) and the risk of future myocardial infarction among apparently healthy men.  Circulation . 1994;  90 2236-2240
  • 78 Loza J P, Gurewich V, Johnstone M, Pannell R. Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis.  Thromb Haemost . 1994;  71 347-352
  • 79 Higazi A, Cohen R L, Henkin J. et al . Enhancement of the enzymatic activity of single-chain urokinase plasminogen activator by soluble urokinase receptor.  J Biol Chem . 1995;  270 17375-17380
  • 80 Redlitz A, Tan A K, Eaton D L, Plow E F. Plasma carboxypeptidases as regulators of the plasminogen system.  J Clin Invest . 1995;  96 2534-2538
  • 81 Sakharov D V, Plow E F, Rijken D C. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B.  J Biol Chem . 1997;  272 14477-14482
  • 82 Loskutoff D J, van Mourik A J, Erickson L A, Lawrence D. Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells.  Proc Natl Acad Sci U S A . 1983;  80 2956-2960
  • 83 Pannekoek H, Veerman H, Lambers H. et al . Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family.  EMBO J . 1986;  5 2539-2544
  • 84 Thorsen S, Philips M, Selmer J, Lecander I, Astedt B. Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2.  Eur J Biochem . 1988;  175 33-39
  • 85 Stump D C, Thienpont M, Collen D. Purification and characterization of a novel inhibitor of urokinase from human urine. Quantitation and preliminary characterization in plasma.  J Biol Chem . 1986;  261 12759-12766
  • 86 Heeb M J, Espana F, Geiger M. et al . Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3.  J Biol Chem . 1987;  262 15813-15816
  • 87 Hedner U, Ginsburg D, Lusher J M, High K A. Congenital hemorrhagic disorders: new insights into the pathophysiology and treatment of hemophilia. Hematology (Am Soc Hematol Educ Program) .  2000;  241-265
  • 88 Seligsohn U. Factor XI deficiency.  Thromb Haemost . 1993;  70 68-71
  • 89 Ginsburg D. Molecular genetics of von Willebrand disease.  Thromb Haemost . 1999;  82 585-591
  • 90 Meade T W, Imeson J, Stirling Y. Effects of changes in smoking and other characteristics on clotting factors and the risk of ischaemic heart disease.  Lancet . 1987;  2 986-988
  • 91 Bergstrand R, Vedin A, Wilhelmsson C. et al . Myocardial infarction among men below age 40.  Br Heart J . 1978;  40 783-788
  • 92 Rosendaal F R. Risk factors for venous thrombotic disease.  Thromb Haemost . 1999;  82 610-619
  • 93 Lane D A, Grant P J. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease.  Blood . 2000;  95 1517-1532
  • 94 Svensson P J, Dahlback B. Resistance to activated protein C as a basis for venous thrombosis.  N Engl J Med . 1994;  330 517-522
  • 95 Rees D C, Cox M, Clegg J B. World distribution of factor V Leiden.  Lancet . 1995;  346 1133-1134
  • 96 Sing C F, Haviland M B, Templeton A R, Zerba K E, Reilly S L. Biological complexity and strategies for finding DNA variations responsible for inter-individual variation in risk of a common chronic disease, coronary artery disease.  Ann Med . 1992;  24 539-547
  • 97 Rosendaal F R. Venous thrombosis: a multicausal disease.  Lancet . 1999;  353 1167-1173
  • 98 Nichols W C, Amano K, Cacheris P M. et al . Moderation of hemophilia A phenotype by the factor V R506Q mutation.  Blood . 1996;  88 1183-1187
  • 99 Lee D H, Walker I R, Teitel J. et al . Effect of the factor V Leiden mutation on the clinical expression of severe hemophilia A.  Thromb Haemost . 2000;  83 387-391
  • 100 Vandenbroucke J P, Koster T, Briet E. et al . Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation.  Lancet . 1994;  344 1453-1457
  • 101 Farley T M, Meirik O, Chang C L, Marmot M G, Poulter N R. Effect of different progestagens in low oestrogen oral contraceptives on venous thromboembolic disease. World Health Organization Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception.  Lancet . 1995;  346 1582-1588
  • 102 Rosendaal F R, Koster T, Vandenbroucke J P, Reitsma P H. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance).  Blood . 1995;  85 1504-1508
  • 103 Rosing J, Tans G, Nicolaes G A. et al . Oral contraceptives and venous thrombosis: different sensitivities to activated protein C in women using second- and third-generation oral contraceptives.  Br J Haematol . 1997;  97 233-238
  • 104 Rosing J, Middeldorp S, Curvers J. et al . Low-dose oral contraceptives and acquired resistance to activated protein C: a randomised cross-over study.  Lancet . 1999;  354 2036-2040
  • 105 Egeberg O. Inherited antithrombin deficiency causing thrombophilia.  Thromb Diath Haemorrh . 1965;  13 516-530
  • 106 Griffin J H, Evatt B, Zimmerman T S, Kleiss A J, Wideman C. Deficiency of protein C in congenital thrombotic disease.  J Clin Invest . 1981;  68 1370-1373
  • 107 Schwarz H P, Fischer M, Hopmeier P, Batard M A, Griffin J H. Plasma protein S deficiency in familial thrombotic disease.  Blood . 1984;  64 1297-1300
  • 108 Comp P C, Esmon C T. Recurrent venous thromboembolism in patients with a partial deficiency of protein S.  N Engl J Med . 1984;  311 1525-1528
  • 109 Poort S R, Rosendaal F R, Reitsma P H, Bertina R M. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis.  Blood . 1996;  88 3698-3703
  • 110 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen.  Thromb Haemost . 1995;  73 151-161
  • 111 Koster T, Blann A D, Briet E, Vandenbroucke J P, Rosendaal F R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.  Lancet . 1995;  345 152-155
  • 112 den Heijer M, Koster T, Blom H J. et al . Hyperhomocysteinemia as a risk factor for deep-vein thrombosis.  N Engl J Med . 1996;  334 759-762
  • 113 Ridker P M, Hennekens C H, Selhub J. et al . Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism.  Circulation . 1997;  95 1777-1782
  • 114 D'Angelo A, Selhub J. Homocysteine and thrombotic disease.  Blood . 1997;  90 1-11
  • 115 Anderson Jr A F, Wheeler H B, Goldberg R J. et al . A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study.  Arch Intern Med . 1991;  151 933-938
  • 116 Gibss N M. Venous thrombosis of the lower limbs with particular reference to bed rest.  Br J Surg . 1957;  45 209-235
  • 117 Cruickshank J M, Gorlin R, Jennett B. Air travel and thrombotic episodes: the economy class syndrome.  Lancet . 1988;  2 497-498
  • 118 Giangrande P L. Air travel and thrombosis.  Br J Haematol . 2002;  117 509-512
  • 119 Daly E, Vessey M P, Hawkins M M. et al . Risk of venous thromboembolism in users of hormone replacement therapy.  Lancet . 1996;  348 977-980
  • 120 Curvers J, Thomassen M C, Rimmer J. et al . Effects of hereditary and acquired risk factors of venous thrombosis on a thrombin generation-based APC resistance test.  Thromb Haemost . 2002;  88 5-11
  • 121 Fijnheer R, Horbach D A, Donders R C. et al . Factor V Leiden, antiphospholipid antibodies and thrombosis in systemic lupus erythematosus.  Thromb Haemost . 1996;  76 514-517
  • 122 Bick R L. Coagulation abnormalities in malignancy: a review.  Semin Thromb Hemost . 1992;  18 353-372
  • 123 Hutten B A, Prins M H, Gent M. et al . Incidence of recurrent thromboembolic and bleeding complications among patients with venous thromboembolism in relation to both malignancy and achieved international normalized ratio: a retrospective analysis.  J Clin Oncol . 2000;  18 3078-3083