Abstract
Chiral cationic palladium(II) 2-(phosphinophenyl)pyridine (1a ) complex was found to be an effective
catalyst for asymmetric Baeyer-Villiger oxidation of prochiral
cyclobutanones. For example, good and excellent enantioselectivities
(80% and >99% ees) were achieved in the
reactions of 3-phenylcyclobutanone and a tricyclic cyclobutanone,
respectively.
Key words
asymmetric Baeyer-Villiger oxidation - asymmetric catalysis - palladium - chiral P-N
ligand
References
<A NAME="RU01803ST-1">1 </A>
Bolm C.
Beckmann O.
Luong TKK. In Transition Metals
for Organic Synthesis
Vol. 2:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
p.213
<A NAME="RU01803ST-2">2 </A> (a)
Bolm C.
Schlingloff G.
Weickhardt K.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
1848
<A NAME="RU01803ST-2">2 </A> (b)
Gusso A.
Baccin C.
Pinna F.
Strukul G.
Organometallics
1994,
13:
3442
<A NAME="RU01803ST-3">3 </A> (a)
Bolm C.
Beckmann O. In Comprehensive
Asymmetric Catalysis
Vol. 2:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.803
<A NAME="RU01803ST-3">3 </A> (b)
Strukul G.
Angew. Chem.
Int. Ed.
1998,
37:
1198
<A NAME="RU01803ST-4A">4a </A>
Bolm C.
Schlingloff G.
J.
Chem. Soc., Chem. Commun.
1995,
1247
<A NAME="RU01803ST-4B">4b </A>
Bolm C.
Schlingloff G.
Bienewald F.
J. Mol.
Cat. A: Chem.
1997,
117:
347
<A NAME="RU01803ST-4C">4c </A>
Strukul G.
Varagnolo A.
Pinna F.
J.
Mol. Cat. A: Chem.
1997,
117:
413
<A NAME="RU01803ST-4D">4d </A>
Bolm C.
Luong KK.
Schlingloff G.
Synlett
1997,
1151
<A NAME="RU01803ST-4E">4e </A>
Paneghetti C.
Gavagnin R.
Pinna F.
Strukul G.
Organometallics
1999,
18:
5057
<A NAME="RU01803ST-4F">4f </A>
Bolm C.
Beckmann O.
Cosp A.
Palazzi C.
Synlett
2001,
1461
<A NAME="RU01803ST-4G">4g </A>
Peng Y.
Feng X.
Yu K.
Li Z.
Jiang Y.
Yeung C.-H.
J.
Orgmet. Chem.
2001,
619:
204
<A NAME="RU01803ST-4H">4h </A>
Bolm C.
Beckmann O.
Palazzi C.
Can.
J. Chem.
2001,
79:
1593
<A NAME="RU01803ST-4I">4i </A>
Miyatake Y.
Nishibayashi Y.
Uemura S.
Bull.
Chem. Soc. Jpn.
2002,
75:
2233
<A NAME="RU01803ST-4J">4j </A>
Murahashi S.-I.
Ono S.
Imada Y.
Angew.
Chem. Int. Ed.
2002,
41:
2366
For stoichiometric B-V
reactions, see:
<A NAME="RU01803ST-5A">5a </A>
Lopp M.
Paju A.
Kanger T.
Pehk T.
Tetrahedron Lett.
1996,
37:
7583
<A NAME="RU01803ST-5B">5b </A>
Kanger T.
Kriis K.
Paju A.
Pehk T.
Lopp M.
Tetrahedron:
Asymmetry
1998,
9:
4475
<A NAME="RU01803ST-5C">5c </A>
Bolm C.
Beckmann O.
Chirality
2000,
12:
523
<A NAME="RU01803ST-5D">5d </A>
Shinohara T.
Fujioka S.
Kotsuki H.
Heterocycles
2001,
55:
237
<A NAME="RU01803ST-5E">5e </A>
Aoki M.
Seebach D.
Helv. Chim. Acta
2001,
84:
187
<A NAME="RU01803ST-6A">6a </A>
Alphand V.
Furstoss R. In Handbook of Enzyme Catalysis in Organic Synthesis
Vol.
2:
Drauz K.
Waldmann H.
VCH Publishers;
Weinheim:
1995.
p.744
<A NAME="RU01803ST-6B">6b </A>
Stewart JD.
Curr. Org. Chem.
1997,
2:
211
<A NAME="RU01803ST-6C">6c </A>
Kayser M.
Chen G.
Stewart J.
Synlett
1999,
153
<A NAME="RU01803ST-6D">6d </A>
Kelly DR.
Chemica Oggi/Chemical Today
2000,
18
<A NAME="RU01803ST-6E">6e </A>
Kelly DR.
Chemica Oggi/Chemical Today
2000,
33
<A NAME="RU01803ST-6F">6f </A>
Kelly DR.
Chemica Oggi/Chemical Today
2000,
52
<A NAME="RU01803ST-6G">6g </A>
Alphand V.
Furstoss R. In Asymmetric
Oxidation Reactions: A Practical Approach
Katsuki T.
Oxford University Press;
Oxford:
2001.
p.214
<A NAME="RU01803ST-6H">6h </A>
Mihovilovic MD.
Muller B.
Stanetty P.
Eur. J. Org. Chem.
2002,
3711
<A NAME="RU01803ST-7A">7a </A>
Uchida T.
Katsuki T.
Tetrahedron
Lett.
2001,
42:
6911
<A NAME="RU01803ST-7B">7b </A>
Watanabe A.
Uchida T.
Ito K.
Katsuki T.
Tetrahedron Lett.
2002,
43:
4481
<A NAME="RU01803ST-7C">7c </A>
Uchida T.
Katsuki T.
Ito K.
Akashi S.
Ishii A.
Kuroda T.
Helv.
Chim. Acta.
2002,
85:
3078
<A NAME="RU01803ST-8">8 </A>
The geometrical problem is avoided,
when a C
2 -symmetric ligand
is used.
<A NAME="RU01803ST-9A">9a </A>
Ito K.
Katsuki T.
Tetrahedron
Lett.
1993,
34:
2661
<A NAME="RU01803ST-9B">9b </A>
Ito K.
Katsuki T.
Chem. Lett.
1994,
1857
<A NAME="RU01803ST-9C">9c </A>
Ito K.
Yoshitake M.
Katsuki T.
Tetrahedron
1996,
52:
3905
<A NAME="RU01803ST-9D">9d </A>
Ito K.
Yoshitake M.
Katsuki T.
Heterocycles
1996,
42:
305
<A NAME="RU01803ST-9E">9e </A>
Ito K.
Kashiwagi R.
Iwasaki K.
Katsuki T.
Synlett
1999,
1563
<A NAME="RU01803ST-9F">9f </A>
Ito K.
Kashiwagi R.
Hayashi S.
Uchida T.
Katsuki T.
Synlett
2001,
284
<A NAME="RU01803ST-10A">10a </A>
von Matt P.
Pfaltz A.
Angew.
Chem. Int. Ed. Engl.
1993,
32:
566
<A NAME="RU01803ST-10B">10b </A>
Sprinz J.
Helmchen G.
Tetrahedron Lett.
1993,
34:
1769
<A NAME="RU01803ST-10C">10c </A>
Dawson GJ.
Frost CG.
Williams JMJ.
Coote SJ.
Tetrahedron
Lett.
1993,
34:
3149
<A NAME="RU01803ST-10D">10d </A>
Loiseleur O.
Meier P.
Pfaltz A.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
200
<A NAME="RU01803ST-11">11 </A>
Typical experimental
procedure
To a solution of bis(benzonitrile)palladium(II)
chloride (1.9 mg, 5.0 mol) in THF (0.4 mL) was added ligand 1a (2.3 mg, 5.5 mol) under nitrogen and
stirred at room temperature for 1 h. Silver hexafluoroantimonate
(3.4 mg, 10 mol) was placed another flask under nitrogen and to
this flask was added the above palladium(II)-1a dichloride
solution. After being stirred for 1 h at room temperature, the mixture
was filtered through a pad of Celite under nitrogen. To the filtrate was
added 3-phenylcyclobutanone (15.2 mg, 0.1 mmol) and then cooled
to -60 °C. To the cooled solution was added UHP
(12.2 mg, 0.13 mmol) and the mixture was further stirred at the
temperature for 214 h. The mixture was concentrated and the residue
was chromatographed on silica gel (hexane-EtOAc, 9:1) to
give dihydro-4-phenylfuran-2(3H )-one
(14.8 mg, 91%). The enantiomeric excess of the product
was determined to be 80% ee by HPLC analysis using chiral
stationary phase column (Daicel Chiralpak AD-H; hexane-i -PrOH, 95:5).