Zusammenfassung
Hintergrund: Sowohl das Gefäßsystem als auch die Drüsen der menschlichen Nasenschleimhaut unterliegen
einer komplizierten Steuerung durch zentrale und lokale Einflüsse. Neben den klassisch-vegetativen
und peptidergen Neurotransmittern kann auch von einer Beeinflussung durch endogen
gebildetes Stickoxid (NO) ausgegangen werden. NO führt zur Stimulation des Immunsystems,
hat antibakterielle und antivirale Wirkungen und moduliert die Schlagfrequenz des
Epithels. Ziel der Untersuchungen war der immunelektronenmikroskopische Nachweis der
Lokalisation der NO-Synthase (NOS)-Isoformen I und III in der entzündungsfreien Nasenschleimhaut
des Menschen.
Material und Methode: Proben der unteren Nasenmuschel von 35 Patienten wurden in einer Paraformaldehyd-Glutaraldehyd-Mischung
fixiert. Nach Dehydrierung, Unicryl-Inkubation und Polymerisation erfolgte zur Markierung
von NO die Applikation von Primärantikörpern gegen die neuronale bzw. endotheliale
Isoform der NO-Synthase (NOS I und III). Abschließend wurde nach einer Streptavidin-Gold-Markierung
und Kontrastierung der Präparate die Auswertung am Transmissionselektronenmikroskop
durchgeführt.
Ergebnisse: Immunreaktive nitrerge Nervenfasern fanden sich in Axonen um die seromukösen Drüsen
und im Bereich arterieller Gefäße. Besonders in drüsennahen Kapillaren konnte endotheliale
NOS nachgewiesen werden. Im endothelialen Zytoplasma von Kapillaren und Arteriolen
war eine starke Akkumulation von NO darstellbar. An Fibroblasten des Stromas wurden
intensive Immunreaktionen beobachtet.
Schlussfolgerungen: Stickoxide beteiligen sich auf verschiedene Weise an der Regulation der physiologischen
Funktionen der Nasenschleimhaut. Als Ko-Transmitter in parasympathischen Nervenfasern
kann NO ein neuromodulatorischer, vasodilatatorischer Effekt an Gefäßen und eine stimulierende
Wirkung an seromukösen Drüsen zugeschrieben werden. Endothelial gebildetes NO scheint
eine relaxierende Wirkung besonders an arteriellen Gefäßen auszuüben. Das Vorkommen
von NO an Fibroblasten kann bei strukturellen Veränderungen durch Rhinopathien eine
Rolle spielen. Hier bestehen zukünftig Ansatzpunkte zur Therapie verschiedener Rhinitiden.
Abstract
Background: Nasal vasculature and seromucous glands are exposed to complex mechanisms influenced
by external as well as internal stimuli. In addition to classic and peptidergic neurotransmitters,
Nitric oxide (NO) was increasingly found to be important in the control of various
physiological functions. NO regulates nasal immunology, influences macrophages activity
and has antiviral and bacteriostatic properties. The aim of this study was to detect
the localization of nitric oxide synthases (NOS) I and III in the normal human nasal
mucosa with immunoelectron microscopical techniques.
Methods: Specimens of non-inflamed inferior turbinates from 35 patients who required nasal
surgery were fixed in phosphate-buffered glutaraldehyde. After dehydration, incubation
in unicryl and polymerization ultrathin sections were cut. Primary antibodies against
NOS I and III were applied and the immunocomplexes were visualized by an immunocytochemical
staining-technique using a gold-labeled antibody. Immunostained structures were photodocumented
by using a transmission electron microscope.
Results: NOS-immunoreactive nerve fibers were mainly colocated in parasympathetic nerves in
the adventitia of arterial vessels and in periglandular axons. Electron microscopy
showed that NOS-positive axons were in close contact with acinus cells. A strong NOS
III-immunoreactivity was found in endothelial cells of capillaries near the glands
as well as in arterial vessels. Furthermore, immunoreaction products were deposited
throughout the cytoplasm of fibroblasts.
Conclusions: Nitric oxide in nerval fibers, seromucous glands and endothelial cells of capillaries
and arterial vessels suggests that NO takes part in the regulation of physiological
processes of the human nasal mucosa. NO was colocalized in parasympathetic nerves
and plays a role in the neurotransmission and neuromodulation of the vascular tone
and glandular secretion. Arteries showed a distinctly developed nitric innervation
and endothelial accumulation. The NO production in axons of the adventitia and in
the endothelium of arteries demonstrated that these vessels are influenced by a dual
NO system. Mainly NO could act on these structures with vasodilatatory effects. Finally
NO would be able to influence the functions of perivascular fibroblasts.
Schlüsselwörter
Stickstoffmonoxid - Nasenschleimhaut - Neurotransmitter - Immunelektronenmikroskopie
Key words
Nitric oxide - Human nasal mucosa - Neurotransmitters - Immunoelectron microscopy
Literatur
1
Jeon S Y, Kim J, Hwang E G.
Origin and distribution of NADPH diaphorase-positive nerves in rat nasal mucosa.
Ann Otorhinolaryngol.
1997;
106(8)
688-692
2
Riederer A, Held B, Wörl J, Unger J.
Endogen gebildetes Stickstoffmonoxid in der Nasenschleimhaut des Menschen: Nachweis
mittels Nikotinamid Adenin Dinukleotid Phosphat-Diaphorase (NADPH-d) Histochemie.
Laryngo-Rhino-Otol.
1996;
75
584-589
3
Riederer A, Held B, Mack B.
Immunhistochemische Untersuchungen zur Verteilung der konstitutiven Stickoxidsynthase
in Gefäßendothelien der Nasenschleimhaut des Menschen.
Laryngo-Rhino-Otol.
1999;
78
373-377
4
Riederer A, Held B, Mayer B, Wörl J.
Histochemical and immunocytochemical study of nitric innervation in human nasal mucosa.
Ann Otorhinolaryngol.
1999;
108(9)
869-875
5
Tasman A J, Bogatzki B, Heppt W, Hauser-Kronberger C, Fischer A.
Nitric oxide synthase in the innervation of the human nasal mucosa: Correlation with
Neuropeptides and Tyrosine Hydroxylase.
Laryngoscope.
1998;
108
128-133
6
Hanazawa T, Tanaka K, Chiba T, Konno A.
Distribution and origin of nitric oxide synthase-containing nerve fibers in human
nasal mucosa.
Acta Otolaryngol.
1997;
117(5)
735-737
7
Kondo T, Inokuchi T, Otha K, Annoh H, Chang J.
Distribution, chemical coding and origin of nitric oxide synthase-containing nerve
fibers in the guinea pig nasal mucosa.
J Auton Nerv Syst.
2000;
80(1 - 2)
71-79
8
Palmer R MJ, Ferrige A G, Moncada S.
Nitric oxide release acounts for the biological activity of endothelium-derived relaxing
factor.
Nature.
1987;
327
524-526
9
Kawamoto H, Takumida M, Takeno S, Watanabe H, Fukushima N, Yajin K.
Localization of nitric oxide synthase in human nasal mucosa with nasal allergy.
Acta Otolaryngol Suppl.
1998;
539
65-70
10
Lundberg J ON, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Änggard A, Hökfelt T,
Lundberg J M, Alving K.
High nitric oxide production in human paranasal sinuses.
Nature Medicine.
1995;
1
370-373
11
Ueda T, Takumida M, Takeno S, Tashiro T, Kawamoto H, Yajin K.
Functional role of nitric oxide in the nasal mucosa of the guinea pig after instillation
with lipopolysaccharide.
Acta Otolaryngol.
2001;
121
510-516
12
Heß A, Bloch W, Rocker J, Addicks K, Stennert E, Michel O.
In vitro expression of inducible nitric oxide synthase in the nasal mucosa of guinea
pigs after incubation with lipipolysaccharides or cytokines.
Eur Arch Otorhinolaryngol.
1998;
255
448-453
13
Heß A, Bloch W, Rocker J, Peters S, Stennert E, Addicks K, Michel O.
Nachweis von Stickstoffmonoxidsynthasen bei physiologischen und pathophysiologischen
Prozessen in der Nasenschleimhaut.
HNO.
2000;
48
489-495
14
Heinrich U R, Maurer J, Gosepath K, Mann W.
Electron microscopic localization of nitric oxide I synthase in the organ of Corti
of the guinea pig.
Eur Arch Otorhinolaryngol.
1997;
254
396-400
15
Heinrich U R, Maurer J, Gosepath K, Mann W.
Immunoelectron microscopic localization of nitric oxide synthase III in the guinea
pig organ of Corti.
Eur Arch Otorhinolaryngol.
1998;
255
483-490
16
Kang B H, Chen S S, Jou L S, Weng P K, Wang H W.
Immunolocalization of inducible nitric oxide synthase and 3-nitrotyrosine in the nasal
mucosa of patients with rhinitis.
Eur Arch Otorhinolaryngol.
2000;
257(5)
242-246
17
Schmidt H HHW, Pollock J S, Nakane M, Förstermann U, Murad F.
Ca2+ /calmodulin-regulated nitric oxide synthases.
Cell Calcium.
1992;
13
427-434
18
Garthwaite J.
Glutamate, nitric oxide and cell-cell signalling in the nervous system.
Trends Neurosci.
1991;
14
60-67
19
Ruffoli R, Fattori B, Giambelluca M A, Soldani P, Giannessi F.
Ultracytochemical localization of the NADPH-d activity in the human nasal respiratory
mucosa in vasomotor rhinitis.
Laryngoscope.
2000;
110
1361-1365
20
Pollock J S, Nakane M, Buttery L DK, Martinez A, Springall D, Polack J M, Förstermann U,
Murad F.
Characterization and localization of endothelial nitric oxide synthase using specific
monoclonal antibodies.
Am J Physiol.
1993;
265
C1379-1387
21
Fischer A, Mundel P, Mayer B, Preissler U, Philippin B, Kummer W.
Nitric oxide synthase in guinea pig lower airway innervation.
Neurosci Lett.
1993;
149
157-160
22
Sakai M, Sawada T, Nishimura T, Nagatsu I.
Expression of nitric oxide synthase in the mouse and human nasal mucosa.
Cytochem.
1996;
29
177-179
23
Brown J F, Keates A C, Hanson P J, Whittle B JR.
Nitric oxide generators and cGMP stimulate mucus secretion by rat gastric mucosal
cells.
Am J Physiol.
1993;
265
G418-422
24
Knipping S t, Holzhausen H J, Agha-Mir-Salim P, Riederer A, Berghaus A.
Elektronenmikroskopische Untersuchungen zur Innervation der Drüsen der Nasenschleimhaut
des Menschen.
Laryngo-Rhino-Otol.
2000;
79
146-150
25
Loesch A, Belai A, Burnstock G.
Ultrastructural localization of NADPH-diaphorase and colocalization of nitric oxide
synthase in endothelial cells of the rabbit aorta.
Cell Tissue Res.
1993;
274
539-545
Dr. med. Stephan Knipping
Universitätsklinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie
der Martin-Luther-Universität Halle-Wittenberg
Magdeburger Straße 12 · 06097 Halle/Saale
Email: stephan.knipping@medizin.uni-halle.de