Rofo 2003; 175(4): 540-546
DOI: 10.1055/s-2003-38442
Pädiatrische Radiologie
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Nierenvolumetrie im Kindesalter: Genauigkeit der dreidimensionalen Sonographie im Vergleich zur konventionellen Sonographie und CT / MRT

Accuracy of Renal Volume Assessment in Children by Three-Dimensional SonographyG.  A.  Fritz1 , M.  Riccabona1 , G.  Bohdal1 , F.  Quehenberger2
  • 1Klinik für Radiologie, Universitätsklinikum Graz, Österreich
  • 2Institut für medizinische Informatik, Statistik und Dokumentation, Universitätsklinikum Graz, Österreich
Further Information

Publication History

Publication Date:
04 April 2003 (online)

Zusammenfassung

Studienziel: Prospektive Evaluation der Genauigkeit des drei-dimensionalen Ultraschalls (3DUS) bei der Volumetrie der kindlichen Niere im Vergleich zur CT/MRT. Methode: Bei 40 Patienten (Alter: 0 - 17 Jahre) mit einer klinisch indizierten CT/MRT des Abdomens oder des Harntrakts wurde zusätzlich ein 2D- und 3DUS inklusive Volumetrie des Nierenparenchyms durchgeführt. Der 3DUS wurde mit einem speziellen 3DUS-Gerät (Voluson 730, Kretztechnik/GE) oder einem auf Positionssensoren basierenden externen 3D-System (Echotech/GE) unter Verwendung systemeigener Volumetrieprogramme durchgeführt. Die CT/MRT-Daten wurden planimetrisch unter Verwendung der integrierten Systemsoftware volumetriert. Ein allfällig erweitertes NBKS wurde vom Gesamtnierenvolumen subtrahiert. Die mit den verschiedenen Modalitäten gemessenen Volumina wurden miteinander verglichen, das CT/MRT-Volumen diente als Referenzwert. Ergebnisse: Bei 74/77 Nieren war der 3DUS mit diagnostischer Qualität ohne Sedierung durchführbar. Der Vergleich 3DUS mit CT/MRT zeigte eine Genauigkeit von - 2,6 ± 4,4 % bei Nieren ohne Hydronephrosen (2DUS - 3,8 ± 14,7 %) und von + 4,0 ± 5,9 % bei Nieren mit Hydronephrosen (2DUS + 9,6 ± 21,3 %). Die Inter-/Intra-Auswertervariabilität betrug ± 7,3 %/ ± 5,3 %. Schlussfolgerung: Die 3DUS-Nierenvolumetrie ist auch im Kindesalter mit diagnostischer Qualität durchführbar und erlaubt eine mit der CT/MRT vergleichbare Bestimmung des Nierenparenchymvolumens.

Abstract

Purpose: Prospective evaluation of the accuracy of three-dimensional ultrasound (3DUS) to assess the renal parenchymal volume. Materials and Methods: CT, MRI, 2DUS and 3DUS were used to measure the renal volume in 40 patients (range: neonate to 17 years; mean age: 8.95 years). The 3DUS was determined with a Voluson 730 (Kretztechnik, GE) or an external 3D-system (EchoTech, GE) using electromagnetic positioning sensors attached to conventional 2DUS-equipment. The 2DUS volume was calculated with the ellipsoid equation and the 3DUS volume computed with the system integrated software. For CT and MRI, planimetric analysis was used to determine the renal parenchymal volume, whereby the dilated collecting system of a hydronephrosis was subtracted to obtain the real renal parenchymal volume. The results of 2DUS and 3DUS were compared to the results of CT and MRI, and inter- and intraobserver variabilities were calculated. Results: In 74 of 77 kidneys, the 3DUS study was of diagnostic quality. The accuracy of the 3DUS volumes compared well to the CT and MRI volumes with a mean difference of -1.8 ± 4.6 % versus a mean difference of -2.4 ± 15.4 % for 2DUS. In normal kidneys, the accuracy was -2.6 ± 4.4 % for 3DUS and -3.8 ± 14.7 % for 2DUS. In hydronephrosis, the accuracy was +4.0 ± 5.9 % and +9.6 ± 21.3 %, respectively, indicating that 3DUS is more accurate than 2DUS, particularly in kidneys with a dilated collecting system. Inter- and intraobserver variabilities were ± 7.3 % and ± 5.3 %. Conclusion: For assessing the renal parenchymal volume in children, 3DUS is feasible and comparable to CT and MRI.

Literatur

  • 1 Bachmann H. Compensatory hypertrophy of the healthy kidney as an important prerequisite for nephrectomy of the small kidney.  Urologe A. 1985;  24 80-83
  • 2 O'Sullivan D C, Dewan P A, Guiney E J. Compensatory hypertrophy effectively assesses the degree of impaired renal function in unilateral renal disease.  Br J Urol. 1992;  69 346-350
  • 3 Lavocat M P, Granjon D, Guimpied Y, Dutour N, Allard D, Prevot N, Dubois F. The importance of 99mTc-DMSA renal scintigraphy in the follow-up of acute pyelonephritis in children: comparison with urographic data.  Nucl Med Commun. 1998;  19 703-710
  • 4 Rossleigh M A, Farnsworth R H, Leighton D M, Yong J L, Christian C L. Technetium-99m dimercaptosuccinic acid scintigraphy studies of renal cortical scarring and renal length.  J Nucl Med. 1998;  39 1280-1285
  • 5 Troell S, Berg U, Johansson B, Wikstad I. Comparison between renal parenchymal sonographic volume, renal parenchymal urographic area, glomerular filtration rate and renal plasma flow in children.  Scand J Urol Nephrol. 1988;  22 207-214
  • 6 Sargent M A, Gupta S C. Sonographic measurement of relative renal volume in children: comparison with scintigraphic determination of relative renal function.  Am J Roentgenol. 1993;  161 157-160
  • 7 Tubiana M. Carcinogenic effects of low radiation dose.  Cancer Radiother. 1999;  3 203-214
  • 8 Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT.  Am J Roentgenol. 2001;  176 289-296
  • 9 Rosendahl H. Ultrasound screening for fetal urinary tract malformations: a prospective study in general population.  Eur J Obsted Gynecol Reprod Biol. 1990;  36 27-33
  • 10 Gunn T R, Mora J D, Pease P. Antenatal diagnosis of urinary tract abnormalities by ultrasonography after 28 weeks gestation.  Am J Obstet Gynecol. 1995;  172 479-486
  • 11 Riccabona M, Nelson T R, Pretorius D H, Davidson T E. Distance and volume measurement using three dimensional ultrasound.  J Ultrasound Med. 1995;  14 881
  • 12 Schlogl S, Werner E, Lassmann M, Terekhova J, Muffert S, Seybold S, Reiners C. The use of three-dimensional ultrasound for thyreoid volumetry.  Thyroid. 2001;  11 569-574
  • 13 Mahr A, Levegrun S, Bahner M L, Kress J, Zuna I, Schlegel W. Usability of semiautomatic segmentation for tumor volume determination.  Invest Radiol. 1999;  34 143-150
  • 14 Nawaratne S, Fabiny R, Brien J E, Zalcberg J, Cosolo W, Whan A, Morgan D J. Accuracy of volume measurement using helical CT.  J Comput Assist Tomogr. 1997;  21 481-486
  • 15 Bae K T, Commean P K, Lee J. Volumetric measurement of renal cysts and parenchyma using MRI: phantomas and patients with polycystic kidney disease.  J Comput Assist Tomogr. 2000;  24 614-619
  • 16 Tiitola M, Kivisaari L, Tervahartiala P, Palomaki M, Kivisaari R P, Mankinen P, Vehmas T. Estimation or quantification of tumor volume? CT study on irregular phantoms.  Acta Radiol. 2001;  42 101-105
  • 17 Monteagudo A, Timor-Tritsch I E, Mayberry P. Three-dimensional transvagina neurosonography of the fetal brain: “navigating” in the volume scan.  Ultrasound Obstet Gynecol. 2000;  16 307-313
  • 18 Marx G R, Sherwood M C. Three-dimensional echocardiography in congenital hear disease: a continuum of unfilled promises? No. A presently clinically applicable technology with an important future? Yes.  Pediatr Cardiol. 2002;  23 266-285
  • 19 Stanojevic M, Hafner T, Kurjak A. Three-dimensional (3D) ultrasound - a useful imaging technique in the assessment of neonatal brain.  Perinat Med. 2002;  30 74-83
  • 20 Gilja O H, Smievoll A I, Thune N, Matre K, Hausken T, Odegaard S, Berstad A. In vivo comparison of 3D ultrasonography and magnetic resonance imaging in volume estimation of human kidneys.  Ultrasound Med Biol. 1995;  21 25-32
  • 21 Riccabona M, Nelson T R, Pretorius D H, Davidson T E. In vivo three-dimensional sonographic measurement of organ volume: validation in the urinary bladder.  J Ultrasound Med. 1996;  15 627-632
  • 22 Kampmann W, Walka M M, Vogel M, Obladen M. 3-D sonographic volume masurement of the cerebral ventricular system: in vitro validation.  Ultrasound Med Biol. 1998;  24 1169-1174
  • 23 Lang H, Wolf G K, Prokop M, Nuber B, Weimann A, Raab R, Zoller W G. Three-dimensional ultrasound for volume measurement of liver tumors.  Chirurg. 1999;  70 246-250
  • 24 Treece G, Prager R, Gee A, Berman L. 3D ultrasound measurement of large organ volume.  Med Image Anal. 2001;  5 41-54
  • 25 Gilmore J H, Gerig G, Specter B, Charles H C, Wilber J S, Hertzberg B S, Kliewer M A. Infant cerebral ventricle volume: a comparision of 3-D ultrasound and magnetic resonance imaging.  Ultrasound Med Biol. 2001;  27 1143-1146
  • 26 Salerno C C, Pretorius D H, Hilton S W, O'Boyle M K, Hull A D, James G M, Riccabona M, Mannino F, Craft A, Nelson T R. Three-dimensional ultrasonographic imaging of the neonatal brain in high-risk neonates: preliminary study.  J Ultrasound Med. 2000;  19 549-555
  • 27 Dinkel E, Ertl M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H. Kidney size in childhood: sonographical growth chart for kidney lenght and volume.  Pediatr Radiol. 1985;  15 38-43
  • 28 Riccabona M, Simbrunner J, Ring E, Ruppert-Kohlmayr A, Ebner F, Fotter R. Feasibility of MR urography in neonates and infants with anomalies of the upper urinary tract.  Eur Radiol. 2002;  12 1442-1450
  • 29 Sargent M A, Long G, Karmali M, Cheng S M. Interobserver variation in the sonographic estimation of renal volume in children.  Pediatr Radiol. 1997;  27 663-666
  • 30 Matre K, Stokke E M, Martens D, Gilja O H. In vitro estimation of kidneys using three-dimensional ultrasonography and a position sensor.  Eur J Ultrasound. 1999;  10 65-73

Univ. Prof. Dr. Michael Riccabona

Univ. Doz. für Radiologie und Pädiatrie, Univ.-Klinik für Radiologie, Abteilung Kinderradiologie

Auenbruggerplatz 34

8036 Graz

Österreich

Phone: 0043/316/385/84205 oder 4202

Fax: 0043/316/385/4299

Email: michael.riccabona@kfunigraz.ac.at