Abstract
The synthesis of new complex structures is still a challenge
in preparative organic chemistry. Focusing on the generation of
defined stereogenic centers, the [3,3]-sigmatropic
rearrangements are known as reliable reactions. Always, a highly
ordered transition state must be passed through, which allows the
shift of chiral information from the reactant into the nascent product.
Generally, the complete [1,3]- and, frequently,
the [1,4]-chirality transfer enables one to predict
the configuration of the new centers.
This review focuses on Claisen and Cope rearrangements, which adopt
the chiral information via a so termed asymmetric induction. This
means, that the directing chiral subunit is placed outside of the six
centers of the rearrangement system being reorganized during the
course of the [3,3]-sigmatropic reaction.
Reviewing the literature since 1995, enantioselective Claisen
rearrangements have been widely investigated. The unique sense of
the reaction allows the conversion of an easily accessible C atom-heteroatom
bond into a new C-C bond making this rearrangement useful
for constructing complex molecules. In contrast, the Cope rearrangement
is reversible. One crucial requirement is to force the process to
completion with respect to the desired product. Hence ‘enantioselective
Cope rearrangements’ are always included as one step in
a reaction cascade to guarantee the unique sense of the process.
Analyzing such reactions in more detail, the chirality-inducing step
is run prior to the Cope rearrangement. Thus, the [3,3]-sigmatropic
rearrangement is conducted under the well-known [1,3]-chirality
transfer conditions.
1 Introduction
2 Asymmetric Claisen Rearrangements: Classification
3 Remote Stereocontrol in Claisen Rearrangements
3.1 Stereogenic Center at C1
3.2 Stereogenic Center at C6
3.3 Stereogenic Center in Other Positions
4 Auxiliary Control in Claisen Rearrangements
4.1 Auxiliary Attached to Position X
4.2 Auxiliary Attached to Position Y
4.3 Auxiliary Attached to Position Z
4.4 Miscellaneous
5 Chiral Metal Complex Directed Claisen Rearrangements
6 Enantioselective Catalyzed Claisen Rearrangements
7 Asymmetric Cope Rearrangements
7.1 Remote Stereocontrol in Cope Rearrangements
7.2 Auxiliary Control in Cope Rearrangements
7.3 Catalyst Control in Cope Rearrangements
8 Summary
Key words
asymmetric Claisen rearrangement - Cope rearrangement - chiral auxiliary - chiral
metal complex - chiral
catalyst
References
For recent reviews on asymmetric
Claisen and Cope rearrangements see:
<A NAME="RE08002SS-1A">1a </A>
Frauenrath H. In Houben-Weyl (Methods
of Organic Chemistry), Stereoselective Synthesis
Vol.
E21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.3301
<A NAME="RE08002SS-1B">1b </A>
Metzner P.
Pure
Appl. Chem.
1996,
68:
863
<A NAME="RE08002SS-1C">1c </A>
Enders D.
Knopp M.
Schiffers R.
Tetrahedron: Asymmetry
1996,
7:
1847
<A NAME="RE08002SS-1D">1d </A>
Ito H.
Taguchi T.
Chem. Soc. Rev.
1999,
28:
43
<A NAME="RE08002SS-1E">1e </A>
Kazmaier U.
Maier S.
Zumpe FL.
Synlett
2000,
1523
<A NAME="RE08002SS-1F">1f </A>
Allin SM.
Baird RD.
Curr. Org.
Chem.
2001,
395
<A NAME="RE08002SS-1G">1g </A>
Hiersemann M.
Abraham L.
Eur. J. Org. Chem.
2002,
1461
<A NAME="RE08002SS-1H">1h </A>
Chai Y.
Hong S.-P.
Lindsay HA.
McFarland C.
McIntosh MC.
Tetrahedron
2002,
58:
2905
<A NAME="RE08002SS-1I">1i </A>
Paquette LA.
Tetrahedron
1997,
53:
1397
For catalytic asymmetric reactions
see:
<A NAME="RE08002SS-2A">2a </A>
Avalos M.
Babiano R.
Cintas P.
Jiménez JL.
Palacios JC.
Tetrahedron: Asymmetry
1997,
8:
2997
<A NAME="RE08002SS-2B">2b </A>
Brunel J.-M.
Luukas TO.
Kagan HB.
Tetrahedron: Asymmetry
1998,
9:
1941
<A NAME="RE08002SS-2C">2c </A>
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
<A NAME="RE08002SS-3A">3a </A>
Palmer MJ.
Wills M.
Tetrahedron:
Asymmetry
1999,
10:
2045
<A NAME="RE08002SS-3B">3b </A>
Daviero P.
Zanda M.
Tetrahedron: Asymmetry
2001,
12:
2225
<A NAME="RE08002SS-4A">4a </A>
Gotor V.
Rebolledo F.
Liz R.
Tetrahedron: Asymmetry
2001,
12:
513
<A NAME="RE08002SS-4B">4b </A>
Enzyme Catalyst
in Organic Synthesis
Drauz K.
Waldmann H.
VCH;
Weinheim, Germany:
1995.
<A NAME="RE08002SS-5">5 </A>
Sreekumar R.
Padmakumar R.
Tetrahedron Lett.
1997,
38:
2413
<A NAME="RE08002SS-6">6 </A>
Beslin P.
Lelong B.
Tetrahedron
1997,
53:
17253
<A NAME="RE08002SS-7">7 </A>
Cuzzupe AN.
Di Florio R.
Rizzacasa MA.
J.
Org. Chem.
2002,
67:
4392
<A NAME="RE08002SS-8A">8a </A>
Pratt LM.
Bowles SA.
Courtney SF.
Hidden C.
Lewis CN.
Martin FM.
Todd RS.
Synlett
1998,
531
<A NAME="RE08002SS-8B">8b </A>
Pratt LM.
Beckett RP.
Bellamy CL.
Corkill DJ.
Cossins J.
Courtney PF.
Davies SJ.
Davidson AH.
Drummond AH.
Helfrich K.
Lewis CN.
Mangan M.
Martin FM.
Miller K.
Nayee P.
Ricketts ML.
Thomas W.
Todd RS.
Whittaker M.
Bioorg.
Med. Chem. Lett.
1998,
8:
1359
<A NAME="RE08002SS-9A">9a </A>
Yamazaki T.
Shinohara N.
Kitazume T.
Sato S.
J. Org.
Chem.
1995,
60:
8140
<A NAME="RE08002SS-9B">9b </A>
Yamazaki T.
Ichige T.
Takei S.
Kawashita S.
Kitazume T.
Kubota T.
Org. Lett.
2001,
3:
2915
<A NAME="RE08002SS-9C">9c </A> For a publication concerning
Michael additions see:
Shinohara N.
Haga J.
Yamazaki T.
Kitazume T.
Nakamura S.
J. Org.
Chem.
1995,
60:
4363
<A NAME="RE08002SS-9D">9d </A> For the Cieplack model
see:
Cieplak AS.
Chem. Rev.
1999,
99:
1265
<A NAME="RE08002SS-9E">9e </A> For a publication on racemic
Michael-Ireland sequences see:
Eriksson M.
Hjelmencrantz A.
Nilsson M.
Olsson T.
Tetrahedron
1995,
51:
12631
<A NAME="RE08002SS-10">10 </A>
Hagiwara H.
Sakai H.
Uchiyama T.
Ito Y.
Morita N.
Hoshi T.
Suzuki T.
Ando M.
J.
Chem. Soc., Perkin Trans. 1
2002,
583
<A NAME="RE08002SS-11">11 </A>
Becker M.
Krause N.
Liebigs Ann. Recueil
1997,
725
<A NAME="RE08002SS-12A">12a </A>
Alayrac C.
Fromont C.
Metzner P.
Anh NT.
Angew. Chem.,
Int. Ed. Engl.
1997,
36:
371 ; Angew. Chem . 1997 , 109 , 418
<A NAME="RE08002SS-12B">12b </A>
Nowaczyk S.
Alayrac C.
Reboul V.
Metzner P.
Averbuch-Pouchot M.-T.
J.
Org. Chem.
2001,
66:
7841
<A NAME="RE08002SS-12C">12c </A> For preparation of optically
active sulfoxides see:
Alayrac C.
Nowaczyk S.
Lemarie M.
Metzner P.
Synthesis
1999,
669
<A NAME="RE08002SS-12D">12d </A>
Alayrac C.
Metzner P.
Tetrahedron Lett.
2000,
41:
2537
<A NAME="RE08002SS-13A">13a </A>
Ernst B.
Gonda J.
Jeschke R.
Nubbemeyer U.
Öhrlein R.
Bellus D.
Helv. Chim.
Acta
1997,
80:
876
<A NAME="RE08002SS-13B">13b </A>
Gonda J.
Martinková M.
Ernst B.
Bellus D.
Tetrahedron
2001,
57:
5607
<A NAME="RE08002SS-13C">13c </A> For a preliminary publication
see:
Nubbemeyer U.
Öhrlein R.
Gonda J.
Ernst B.
Bellus D.
Angew. Chem., Int. Ed Engl.
1991,
30:
1465 ; Angew. Chem. 1991 , 103 , 1533
<A NAME="RE08002SS-14A">14a </A>
Nubbemeyer U.
J. Org. Chem.
1995,
60:
3773
<A NAME="RE08002SS-14B">14b </A>
Nubbemeyer U.
J.
Org. Chem.
1996,
61:
3677
<A NAME="RE08002SS-14C">14c </A>
Laabs S.
Scherrmann A.
Sudau A.
Diederich M.
Kierig C.
Nubbemeyer U.
Synlett
1999,
25
<A NAME="RE08002SS-15A">15a </A>
von Braun J.
Chem. Ber.
1907,
40:
3914
<A NAME="RE08002SS-15B">15b </A>
Cooley JH.
Evain EJ.
Synthesis
1989,
1
<A NAME="RE08002SS-16">16 </A>
Mulzer J.
Shanyoor M.
Tetrahedron Lett.
1993,
34:
6545
<A NAME="RE08002SS-17A">17a </A>
Martinková M.
Gonda J.
Tetrahedron
Lett.
1997,
38:
875
<A NAME="RE08002SS-17B">17b </A>
Gonda J.
Bednarikova M.
Tetrahedron Lett.
1997,
38:
5569
<A NAME="RE08002SS-17C">17c </A>
Gonda J.
Martinková M.
Walko M.
Zavacká E.
Milos¡ Bud
ínsk M.
Ivana
Císa
ová I.
Tetrahedron
Lett.
2001,
42:
4401
<A NAME="RE08002SS-17D">17d </A>
Gonda J.
Martinková M.
Imrich J.
Tetrahedron
2002,
58:
1611
A Johnson rearrangement involving
such a system was found to be unselective:
<A NAME="RE08002SS-18A">18a </A>
Tadano K.
Idogaki Y.
Yamada H.
Suami T.
Chem Lett.
1985,
1925
<A NAME="RE08002SS-18B">18b </A>
Tadano K.
Idogaki Y.
Yamada H.
Suami T.
J. Org. Chem.
1987,
52:
1201
<A NAME="RE08002SS-19A">19a </A>
Gonda J.
Zavacka E.
Budesinsky M.
Cisarova I.
Podlaha J.
Tetrahedron Lett.
2000,
41:
525
<A NAME="RE08002SS-19B">19b </A>
Gonda J.
Helland A.-C.
Ernst B.
Bellus D.
Synthesis
1993,
729
<A NAME="RE08002SS-20">20 </A>
Overman LE.
Angew.
Chem., Int Ed. Engl.
1984,
23:
579 ; Angew. Chem.
1984 , 96 , 565
<A NAME="RE08002SS-21">21 </A>
For the discussion of a stepwise reaction
mechanism see chapter 6 and the literature cited therein.
<A NAME="RE08002SS-22A">22a </A>
Ovaa H.
Codee JDC.
Lastdrager B.
Overkleeft HS.
van der Marel GA.
van Boom JH.
Tetrahedron Lett.
1999,
40:
5063
<A NAME="RE08002SS-22B">22b </A>
Nishikawa T.
Asai M.
Ohyabu N.
Yamamoto N.
Fukuda Y.
Isobe M.
Tetrahedron
2001,
57:
3875
<A NAME="RE08002SS-22C">22c </A>
Nishikawa T.
Asai M.
Isobe M.
J.
Am. Chem. Soc.
2002,
124:
7847
<A NAME="RE08002SS-23A">23a </A>
Boeckman RK.
Neeb MJ.
Gaul MD.
Tetrahedron
Lett.
1995,
36:
803
<A NAME="RE08002SS-23B">23b </A>
Boeckman RK.
del Rosario Rico Ferreira M.
Mitchell LH.
Shao P.
J. Am.
Chem. Soc.
2002,
124:
<A NAME="RE08002SS-24">24 </A>
Magnus P.
Westwood N.
Tetrahedron Lett.
1999,
40:
4659
<A NAME="RE08002SS-25">25 </A>
Fukuzaki T.
Kobayashi S.
Hibi T.
Ikuma Y.
Ishihara J.
Kanoh N.
Murai A.
Org.
Lett.
2002,
4:
2877 ;
further racemic examples of model compound rearrangements are given
in this reference
<A NAME="RE08002SS-26">26 </A>
Barrett AGM.
Ahmed M.
Baker SP.
Baugh SPD.
Braddock DC.
Procopiou PA.
White AJP.
Williams DJ.
J. Org. Chem.
2000,
65:
3716
<A NAME="RE08002SS-27A">27a </A>
Vourloumis D.
Kim KD.
Petersen JL.
Magriotis PA.
J. Org. Chem.
1996,
61:
4848
<A NAME="RE08002SS-27B">27b </A> For a preliminary communication
see:
Magriotis PA.
Kim KD.
J. Am. Chem. Soc.
1993,
115:
2972
<A NAME="RE08002SS-28">28 </A>
de la Pradilla RF.
Montero C.
Tortosa M.
Org. Lett.
2002,
4:
2373
<A NAME="RE08002SS-29A">29a </A>
Tsunoda T.
Nishii T.
Yoshizuka M.
Yamasaki C.
Suzuki T.
Itô S.
Tetrahedron
Lett.
2000,
41:
7667
<A NAME="RE08002SS-29B">29b </A> For preliminary publications
see:
Tsunoda T.
Sakai M.
Sasaki O.
Sako Y.
Hondo Y.
Tetrahedron Lett.
1992,
33:
1651
<A NAME="RE08002SS-29C">29c </A>
Tsunoda T.
Tatsuki S.
Shiraishi Y.
Akasaka M.
Itô S.
Tetrahedron
Lett.
1993,
34:
3297
<A NAME="RE08002SS-29D">29d </A>
Tsunoda T.
Tatsuki S.
Kataoka K.
Itô S.
Chem. Lett.
1994,
543
<A NAME="RE08002SS-29E">29e </A>
Itô S.
Tsunoda T.
Pure Appl. Chem.
1994,
66:
2071
<A NAME="RE08002SS-29F">29f </A>
Tsunoda T.
Ozaki F.
Shirakata N.
Tamaoka Y.
Yamamoto H.
Itô S.
Tetrahedron Lett.
1996,
37:
2463
<A NAME="RE08002SS-30A">30a </A>
Laabs S.
Münch W.
Bats J.-W.
Nubbemeyer U.
Tetrahedron
2002,
58:
1317
<A NAME="RE08002SS-30B">30b </A>
Zhang N.
Nubbemeyer U.
Synthesis
2002,
242 ; for a preliminary result see ref. 14c
<A NAME="RE08002SS-31">31 </A>
The Ireland-type rearrangements are
characterized by metal enolates bearing chiral ligands. These reactions
are discussed in chapter 5 (vide infra).
<A NAME="RE08002SS-32A">32a </A>
Mulder JA.
Hsung RP.
Frederick MO.
Tracey MR.
Zificsak CA.
Org.
Lett.
2002,
4:
1383
<A NAME="RE08002SS-32B">32b </A> For a synthesis of alkynyl
amides see:
Wei L.-L.
Mulder JA.
Xiong H.
Zificsak CA.
Douglas CA.
Hsung RP.
Tetrahedron
2001,
57:
459
<A NAME="RE08002SS-33A">33a </A> Sibi
auxiliary:
Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
<A NAME="RE08002SS-33B">33b </A> Evans asymmetric aldol
reaction:
Evans DA.
Aldrichimica
Acta
1982,
15:
23
<A NAME="RE08002SS-34A">34a </A>
Hungerhoff B.
Metz P.
Tetrahedron
1999,
55:
14941
<A NAME="RE08002SS-34B">34b </A>
Hungerhoff B.
Metz P.
J. Org. Chem.
1997,
62:
4442
<A NAME="RE08002SS-34C">34c </A>
Hungerhoff B.
Metz P.
GIT Fachz. Lab.
1996,
40:
690
<A NAME="RE08002SS-35">35 </A>
Metz P.
Tetrahedron
1993,
49:
6367
<A NAME="RE08002SS-36A">36a </A>
Welch JT.
Eswarakrishnan S.
J.
Am. Chem. Soc.
1987,
109:
6716
<A NAME="RE08002SS-36B">36b </A>
Reddy KV.
Rajappa S.
Tetrahedron
Lett.
1992,
33:
7957
<A NAME="RE08002SS-36C">36c </A>
Jain S.
Sinha N.
Dikshit DK.
Anand N.
Tetrahedron Lett.
1995,
36:
8467
<A NAME="RE08002SS-37A">37a </A>
Lemieux RM.
Meyers AI.
J. Am. Chem. Soc.
1998,
120:
5453
<A NAME="RE08002SS-37B">37b </A>
Lemieux RM.
Devine PM.
Mechelke MF.
Meyers AI.
J.
Org. Chem.
1999,
64:
3585
<A NAME="RE08002SS-37C">37c </A>
Watson DJ.
Lawrence CM.
Meyers AI.
Tetrahedron Lett.
2000,
41:
815
<A NAME="RE08002SS-37D">37d </A> For a preliminary publication
see:
Devine PM.
Meyers AI.
J. Am. Chem. Soc.
1994,
116:
2633
<A NAME="RE08002SS-37E">37e </A> For a palladium-catalyzed rearrangement
(moderate stereoselectivity):
Watson DJ.
Devine PM.
Meyers AI.
Tetrahedron Lett.
2000,
41:
1363
<A NAME="RE08002SS-38">38 </A>
The reversibility had been proven
by subjecting the pure product to the reaction conditions resulting
in the Claisen reactant and potentially some other diastereomers.
<A NAME="RE08002SS-39">39 </A>
Wilkens J.
Wallbaum S.
Saak W.
Haase D.
Pohl S.
Patkar LN.
Dixit AN.
Chittari P.
Rajappa S.
Martens J.
Liebigs Ann.
1996,
927
<A NAME="RE08002SS-40">40 </A>
He S.
Kozmin SA.
Rawal VH.
J.
Am. Chem. Soc.
2000,
122:
190 ;
additionally the commercially available C2 -symmetric
2,5-bis-(methoxymethyl) pyrrolidine had been employed once resulting
in a high yield and a high diastereoselectivity
<A NAME="RE08002SS-41">41 </A>
Dantale S.
Reboul V.
Metzner P.
Philouze C.
Chem.-Eur. J.
2002,
8:
632
<A NAME="RE08002SS-42A">42a </A>
Kallmerten J.
Gould TJ.
J.
Org. Chem.
1986,
51:
1152
<A NAME="RE08002SS-42B">42b </A> For another chelate controlled
racemic ester enolate Claisen rearrangement see:
Krafft ME.
Dasse OA.
Jarrett S.
Fievre A.
J.
Org. Chem.
1995,
60:
5093
<A NAME="RE08002SS-43A">43a </A>
Maier S.
Kazmaier U.
Eur.
J. Org. Chem.
2000,
1241
<A NAME="RE08002SS-43B">43b </A>
Kazmaier U.
J.
Org. Chem.
1994,
59:
6667
<A NAME="RE08002SS-44A">44a </A>
Enders D.
Knopp M.
Tetrahedron
1996,
52:
5805
<A NAME="RE08002SS-44B">44b </A>
Enders D.
Knopp M.
Runsink J.
Raabe G.
Liebigs Ann.
1996,
1095
<A NAME="RE08002SS-44C">44c </A>
Enders D.
Knopp M.
Runsink J.
Raabe G.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2278 ; Angew. Chem. 1995 , 107 , 2442
<A NAME="RE08002SS-45A">45a </A>
Dalko PI.
Langlois Y.
Tetrahedron
Lett.
1998,
39:
2107
<A NAME="RE08002SS-45B">45b </A> For a review concerning
related rearrangements see:
Kelly TR.
Arvanitis A.
Tetrahedron Lett.
1984,
25:
39
<A NAME="RE08002SS-46">46 </A>
Roush WR.
Works AB.
Tetrahedron Lett.
1997,
38:
351
<A NAME="RE08002SS-47A">47a </A>
Maruoka K.
Saito S.
Yamamoto H.
J. Am. Chem. Soc.
1995,
117:
1165
<A NAME="RE08002SS-47B">47b </A> Racemic catalytic variant:
Saito S.
Shimada K.
Yamamoto H.
Synlett
1996,
720
<A NAME="RE08002SS-47C">47c </A> For some early publications
see:
Maruoka K.
Banno H.
Yamamoto H.
J. Am. Chem. Soc.
1990,
112:
7791
<A NAME="RE08002SS-47D">47d </A>
Maruoka K.
Yamamoto H.
Tetrahedron: Asymmetry
1991,
2:
647
<A NAME="RE08002SS-47E">47e </A>
Maruoka K.
Yamamoto H.
Synlett
1991,
793
<A NAME="RE08002SS-48">48 </A> For an early publication using a
(IPC)2 BOTf:
Oh T.
Wrobel Z.
Devine PN.
Synlett
1992,
81
<A NAME="RE08002SS-49">49 </A>
Tayama E.
Saito A.
Ooi T.
Maruoka K.
Tetrahedron
2002,
58:
8307
<A NAME="RE08002SS-50A">50a </A>
Corey EJ.
Kania RS.
J.
Am. Chem. Soc.
1996,
118:
1229
<A NAME="RE08002SS-50B">50b </A>
Corey EJ.
Roberts BE.
Dixon BR.
J. Am. Chem. Soc.
1995,
117:
193
<A NAME="RE08002SS-51">51 </A>
The use of Hünig’s
base resulted in a disappointing yield of only 36%. Barton’s
base: pentaisopropylguanidine.
<A NAME="RE08002SS-52A">52a </A>
Ito H.
Sato A.
Kobayashi T.
Taguchi T.
J. Chem. Soc.,
Chem. Commun.
1998,
2441
<A NAME="RE08002SS-52B">52b </A>
Ito H.
Sato A.
Taguchi T.
Tetrahedron
Lett.
1997,
38:
4815
<A NAME="RE08002SS-53">53 </A>
The boron ester formation was crucial
for the Claisen rearrangement to proceed. In the absence of an o -OH group the reaction failed. The o -OH group could be replaced by a carboxylic
acid function but such conversion resulted a lower yield and a decreased
enantioselectivity. Additionally some p -product
was isolated.
<A NAME="RE08002SS-54A">54a </A>
Kazmaier U.
Mues H.
Krebs A.
Chem.-Eur. J.
2002,
8:
1850
<A NAME="RE08002SS-54B">54b </A>
Mues H.
Kazmaier U.
Synthesis
2001,
487
<A NAME="RE08002SS-54C">54c </A>
Mues H.
Kazmaier U.
Synlett
2000,
1004
<A NAME="RE08002SS-54D">54d </A>
Bakke M.
Ohta H.
Kazmaier U.
Sugai T.
Synthesis
1999,
1671
<A NAME="RE08002SS-54E">54e </A>
Krebs A.
Kazmaier U.
Tetrahedron Lett.
1999,
40:
479
<A NAME="RE08002SS-54F">54f </A>
Krebs A.
Kazmaier U.
Tetrahedron Lett.
1996,
37:
7945
<A NAME="RE08002SS-54G">54g </A>
Kazmaier U.
Krebs A.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2012 ; Angew. Chem. 1995 , 107 , 2213
<A NAME="RE08002SS-54H">54h </A>
Kazmaier U.
Maier S.
J. Chem. Soc., Chem. Commun.
1995,
1991
<A NAME="RE08002SS-55">55 </A>
Yoon TP.
MacMillan DWC.
J. Am.
Chem. Soc.
2001,
123:
2911
<A NAME="RE08002SS-56">56 </A>
However this special variant did obviously
not suffer from any von Braun type degradation or from any [2+2]-cycloadditions
as reported in previous publications and references cited therein).
For potential catalysts see
<A NAME="RE08002SS-57A">57a </A>
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
<A NAME="RE08002SS-57B">57b </A>
Fache F.
Schulz E.
Tommasino ML.
Lemaire M.
Chem. Rev.
2000,
100:
2159
<A NAME="RE08002SS-58A">58a </A>
Sugiura M.
Nakai T.
Tetrahedron
Lett.
1996,
37:
7991
<A NAME="RE08002SS-58B">58b </A>
Sugiura M.
Yanagisawa M.
Nakai T.
Synlett
1995,
447
<A NAME="RE08002SS-59">59 </A>
Reacting non-symmetric enol ethers
the palladium-catalyzed version preferentially gave the less-substituted vinyl
systems. The rearrangement passed through a boat-like transition
state. In contrast the proton-catalyzed reaction gave the higher
substituted vinylether and the thermal rearrangement (100 °C)
passed through a chair-like transition state. Regio- and stereochemistry
could be influenced by a careful choice of the reaction conditions.
For the discussion of a two-step reaction mechanism see Overman
amidate rearrangements.
[67 ]
<A NAME="RE08002SS-60A">60a </A>
Trost BM.
Schroeder GM.
J. Am. Chem. Soc.
2000,
122:
3785
<A NAME="RE08002SS-60B">60b </A>
Trost BM.
Toste DF.
J.
Am. Chem. Soc.
1998,
120:
815
<A NAME="RE08002SS-60C">60c </A> For a racemic version
see:
Gester S.
Metz P.
Zierau O.
Vollmer G.
Tetrahedron
2001,
57:
1015
<A NAME="RE08002SS-60D">60d </A> For a potential racemization
during aromatic Claisen rearrangements see:
Bernard AM.
Cocco MT.
Onnis V.
Piras PP.
Synthesis
1997,
41
Generally such intermediate cations
could suffer from so-called abnormal 1,3 Claisen rearrangements.
A catalytic variant to generate polycyclic terpenoids has been investigated
by:
<A NAME="RE08002SS-61A">61a </A>
Nakamura S.
Ishihara K.
Yamamoto H.
J.
Am. Chem. Soc.
2000,
122:
8131
<A NAME="RE08002SS-61B">61b </A> For further 1,3 rearrangements
(chirality transfer) see:
Shiina I.
Nagasue H.
Tetrahedron Lett.
2002,
43:
5837
<A NAME="RE08002SS-61C">61c </A> See also:
Hashimoto H.
Jin T.
Karikomi M.
Seki K.
Hagaa K.
Uyeharaa T.
Tetrahedron Lett.
2002,
43:
3633
<A NAME="RE08002SS-62A">62a </A>
Wood JL.
Moniz GA.
Org.
Lett.
1999,
1:
371
<A NAME="RE08002SS-62B">62b </A>
Drutu I.
Krygowski ES.
Wood JL.
J. Org. Chem.
2001,
66:
7025
<A NAME="RE08002SS-62C">62c </A> For a direct allylation
of diazoketones as a surrogate for catalyzed enantioselective Claisen rearrangements
see:
Davies HML.
Ren P.
Jin Q.
Org. Lett.
2001,
3:
3587
<A NAME="RE08002SS-63">63 </A>
The rhodium catalyst did not influence
the Claisen rearrangement step.
<A NAME="RE08002SS-64A">64a </A>
Miller SP.
Morken JP.
Org. Lett.
2002,
4:
2743
<A NAME="RE08002SS-64B">64b </A> For further tandem processes
see: Diels-Alder/Claisen:
Soldermann N.
Velker J.
Vallat O.
Stoeckli-Evans H.
Neier R.
Helv.
Chim. Acta
2000,
83:
2266
<A NAME="RE08002SS-64C">64c </A>
Frank SA.
Works AB.
Roush WR.
Can. J. Chem.
2000,
78:
757
<A NAME="RE08002SS-65A">65a </A>
Wipf P.
Ribe S.
Org.
Lett.
2001,
3:
1503
<A NAME="RE08002SS-65B">65b </A>
The Claisen rearrangement
is an ideal precursor for olefin converting consecutive processes
such as metathesis dihydroxylations etc.
<A NAME="RE08002SS-66A">66a </A>
Abraham L.
Czerwonka R.
Hiersemann M.
Angew. Chem. Int. Ed.
2001,
40:
4700 ; Angew. Chem.
2001 , 113 , 4835
<A NAME="RE08002SS-66B">66b </A> For catalyzed racemic
rearrangements see:
Hiersemann M.
Abraham L.
Org. Lett.
2001,
3:
49
<A NAME="RE08002SS-66C">66c </A>
Hiersemann M.
Synthesis
2000,
1279
<A NAME="RE08002SS-66D">66d </A>
Kaden S.
Hiersemann M.
Synlett
2002,
1999
<A NAME="RE08002SS-67A">67a </A>
Calter M.
Hollis TK.
Overman LE.
Ziller J.
Zipp GG.
J. Org. Chem.
1997,
62:
1449
<A NAME="RE08002SS-67B">67b </A>
Kollis TK.
Overman LE.
Tetrahedron
Lett.
1997,
38:
8837
<A NAME="RE08002SS-67C">67c </A>
Cohen F.
Overman LE.
Tetrahedron: Asymmetry
1998,
9:
3213
<A NAME="RE08002SS-67D">67d </A>
Donde Y.
Overman LE.
J. Am. Chem. Soc.
1999,
121:
2933
<A NAME="RE08002SS-67E">67e </A> For the thermal and palladium-catalyzed
racemic rearrangement see:
Overman LE.
Zipp GG.
J. Am. Chem. Soc.
1997,
62:
2288
<A NAME="RE08002SS-68">68 </A>
Kang J.
Yew KH.
Kim TH.
Choi DH.
Tetrahedron Lett.
2002,
43:
9509
<A NAME="RE08002SS-69A">69a </A>
Jiang Y.
Lougmire JM.
Zhang X.
Tetrahedron Lett.
1999,
40:
1449
<A NAME="RE08002SS-69B">69b </A>
Leung P.-H.
Ng K.-H.
Li Y.
White AJP.
Williams DJ.
J.
Chem. Soc., Chem. Commun.
1999,
2435
<A NAME="RE08002SS-69C">69c </A>
Uozumi Y.
Kato K.
Hayashi T.
Tetrahedron:
Asymmetry
1998,
9:
1065
<A NAME="RE08002SS-70">70 </A>
Gais H.-J.
Böhme A.
J. Org. Chem.
2002,
67:
1153
For an aza-Cope-Mannich
tandem process see:
<A NAME="RE08002SS-71A">71a </A>
Knight SD.
Overman LE.
Pairaudeau G.
J. Am. Chem. Soc.
1995,
117:
5776
<A NAME="RE08002SS-71B">71b </A>
For oxy-Cope-aldol
tandem process see ref.
[1i ]
<A NAME="RE08002SS-72">72 </A> Low stereoselectivities were observed
in several anionic oxy-Cope rearrangements:
Lee Y.
Lee YR.
Moon O.
Kwon O.
Shim MS.
Yun JS.
J. Org. Chem.
1994,
59:
1444
For an example where a chiral chromium
arene complex did not affect the stereochemical outcome of a Cope rearrangement
see:
<A NAME="RE08002SS-73A">73a </A>
Mandal SK.
Sarkar A.
J. Chem. Soc.,
Perkin Trans. 1
2002,
669
<A NAME="RE08002SS-73B">73b </A> For an aza-Cope rearrangement
via chromium carbene complexes see:
Barluenga J.
Tomas M.
Ballesteros A.
Santamaria J.
Suarez-Sobrino A.
J.
Org. Chem.
1997,
62:
9229
<A NAME="RE08002SS-74A">74a </A>
Kuehne ME.
Xu F.
J.
Org. Chem.
1997,
62:
7950
<A NAME="RE08002SS-74B">74b </A>
Kuehne ME.
Xu F.
J. Org. Chem.
1998,
63:
9427
<A NAME="RE08002SS-74C">74c </A>
Kuehne ME.
Xu F.
J. Org. Chem.
1998,
63:
9434
<A NAME="RE08002SS-75">75 </A>
Deloisy S.
Kunz H.
Tetrahedron Lett.
1998,
39:
791
<A NAME="RE08002SS-76A">76a </A>
Cardoso AS.
Lobo AM.
Prabhakar S.
Tetrahedron Lett.
2000,
41:
3611
<A NAME="RE08002SS-76B">76b </A>
Depew KM.
Danishefsky SJ.
Rosen N.
Sepp-Lorenzino L.
J.
Am. Chem. Soc.
1996,
118:
12463
<A NAME="RE08002SS-77">77 </A>
The 3,5-rearrangement can be described
as an iminium salt olefin addition and a subsequent fragmentation
(cation stabilization). No new stereogenic center was constructed.
<A NAME="RE08002SS-78">78 </A>
Román E.
Baños M.
Higes FJ.
Serrano JA.
Tetrahedron: Asymmetry
1998,
9:
449
<A NAME="RE08002SS-79">79 </A>
Agami C.
Couty F.
Puchot-Kadouri C.
Synlett
1998,
449
<A NAME="RE08002SS-80A">80a </A>
Nokami J.
Ohga M.
Nakamoto H.
Matsubara T.
Hussain I.
Kataoka K.
J. Am. Chem.
Soc.
2002,
123:
9168
<A NAME="RE08002SS-80B">80b </A> For preliminary publications
see:
Nokami J.
Anthony L.
Sumida S.
Chem.-Eur. J.
2000,
6:
2909 ; concept
<A NAME="RE08002SS-80C">80c </A> See also:
Sumida S.
Ohga M.
Mitani J.
Nokami J.
J. Am. Chem. Soc.
2000,
122:
1310
<A NAME="RE08002SS-80D">80d </A>
Nokami J.
Yoshizane K.
Matsuura H.
Sumida S.
J. Am. Chem. Soc.
1998,
120:
6609
<A NAME="RE08002SS-80E">80e </A>
Semeyn C.
Blaauw RH.
Hiemstra H.
Speckamp WN.
J. Org. Chem.
1997,
62:
3426
<A NAME="RE08002SS-80F">80f </A> For a recent publication
(1,3 chirality transfer in 2-oxonia Cope rearrangements see:
Loh T.-P.
Hu Q.-Y.
Ma L.-T.
Org. Lett.
2002,
4:
2389
The reversibility of the Cope rearrangement
might cause some racemization - the avoiding of such a
process was recommended. Alternatively a Prins cyclization could
be discussed as the basic reaction mechanism. Cope rearrangements
were found to be much faster than the Prins reaction. For the role
of oxonia Cope rearrangements in Prins cyclizations see:
<A NAME="RE08002SS-81A">81a </A>
Rychnovsky SD.
Marumoto S.
Jaber JJ.
Org. Lett.
2001,
3:
3815
<A NAME="RE08002SS-81B">81b </A>
Marumoto S.
Jaber JJ.
Vitale JP.
Rychnovsky SD.
Org.
Lett.
2002,
4:
3919
<A NAME="RE08002SS-82A">82a </A>
Allin SM.
Baird RD.
Lins RJ.
Tetrahedron Lett.
2002,
43:
4195
<A NAME="RE08002SS-82B">82b </A>
Allin SM.
Button MAC.
Baird RD.
Synlett
1998,
1117
<A NAME="RE08002SS-82C">82c </A>
Allin SM.
Button MAC.
Tetrahedron
Lett.
1998,
39:
3345-3348
<A NAME="RE08002SS-82D">82d </A> For preliminary publications
see:
Allin SM.
Button MAC.
Shuttleworth SJ.
Synlett
1997,
725
<A NAME="RE08002SS-83">83 </A>
n -BuLi
was found to be the base of choice to induce the anionic amino Cope
rearrangements. Experiments using alternative strong bases such
as LDA and KHMDS failed.
<A NAME="RE08002SS-84A">84a </A>
Young Yoo H.
Houk KN.
Lee JK.
Scialdone MA.
Meyers AI.
J.
Am. Chem. Soc.
1998,
120:
205
<A NAME="RE08002SS-84B">84b </A>
Dobson HK.
LeBlanc R.
Perrier H.
Stephenson C.
Welch TR.
Macdonald D.
Tetrahedron
Lett.
1999,
40:
3119
<A NAME="RE08002SS-84C">84c </A>
Allin SM.
Button MAC.
Tetrahedron
Lett.
1999,
40:
3801
<A NAME="RE08002SS-85">85 </A>
Tomooka K.
Nagasawa A.
Wei S.-Y.
Nakai T.
Tetrahedron Lett.
1996,
37:
8899
<A NAME="RE08002SS-86">86 </A>
In contrast to the Oppolzer sultams
the corresponding Evans auxiliary gave only moderate chiral induction
of about 50% de building-up the new stereogenic center.
<A NAME="RE08002SS-87">87 </A>
Tomooka K.
Nagasawa A.
Wei S.-Y.
Nakai T.
Tetrahedron Lett.
1996,
37:
8995
<A NAME="RE08002SS-88A">88a </A>
Schneider C.
Rehfeuter M.
Tetrahedron
Lett.
1998,
39:
9
<A NAME="RE08002SS-88B">88b </A>
Black WC.
Giroux A.
Greidanus G.
Tetrahedron Lett.
1996,
37:
4471
<A NAME="RE08002SS-89">89 </A>
Paquette LA.
Tae J.
J. Org. Chem.
1998,
63:
2022
<A NAME="RE08002SS-90">90 </A>
Davies HML.
Ahmed G.
Churchill MR.
J. Am. Chem. Soc.
1996,
118:
10774
For potential catalysts see:
<A NAME="RE08002SS-91A">91a </A>
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
<A NAME="RE08002SS-91B">91b </A>
Fache F.
Schulz E.
Tommasino ML.
Lemaire M.
Chem. Rev.
2000,
100:
2159
<A NAME="RE08002SS-92A">92a </A>
Davies HWL.
Hodges ML.
J. Org. Chem.
2002,
65:
5683
<A NAME="RE08002SS-92B">92b </A>
Davies HML.
Doan BD.
J.
Org. Chem.
1999,
64:
8501
<A NAME="RE08002SS-92C">92c </A>
Davies HML.
Stafford DG.
Doan BD.
Houser JH.
J.
Am. Chem. Soc.
1998,
120:
3326
<A NAME="RE08002SS-92D">92d </A>
Davies HML.
Doan BD.
Tetrahedron
Lett.
1996,
37:
3967
<A NAME="RE08002SS-92E">92e </A> For a racemic series synthesizing azabicyclo[3,2,2]nonanes
see:
Davies HML.
Hodges LM.
Thornley CT.
Tetrahedron
Lett.
1998,
39:
2707
<A NAME="RE08002SS-92F">92f </A> Syntheses of tremulenolides:
Davies HML.
Doan BD.
J. Org. Chem.
1998,
63:
657
<A NAME="RE08002SS-93">93 </A>
For a mechanistic discussion concerning
the stereochemical outcome of the asymmetric catalyzed cyclopropanation
see the original references.
<A NAME="RE08002SS-94">94 </A>
Claisen L.
Ber.
Dtsch. Chem. Ges.
1912,
45:
1423
<A NAME="RE08002SS-95A">95a </A>
Cope AC.
Hardy EM.
J.
Am. Chem. Soc.
1940,
62:
441
<A NAME="RE08002SS-95B">95b </A>
Cope AC.
Hoyle KE.
Heyl D.
J. Am. Chem. Soc.
1941,
63:
1843
<A NAME="RE08002SS-95C">95c </A>
Cope AC.
Hofmann CM.
Hardy EM.
J. Am. Chem. Soc.
1941,
63:
1852
<A NAME="RE08002SS-95D">95d </A>
Cope AC.
Field L.
J. Am. Chem.
Soc.
1949,
71:
1589
<A NAME="RE08002SS-95E">95e </A>
Whyte DE.
Cope AC.
J.
Am. Chem. Soc.
1943,
65:
1999
<A NAME="RE08002SS-96A">96a </A>
Carroll MF.
J. Chem. Soc.
1940,
704
<A NAME="RE08002SS-96B">96b </A>
Carroll MF.
J. Chem. Soc.
1940,
1266
<A NAME="RE08002SS-96C">96c </A>
Carroll MF.
J. Chem. Soc.
1941,
507
<A NAME="RE08002SS-96D">96d </A>
Wick AE.
Felix D.
Steen K.
Eschenmoser A.
Helv. Chim. Acta
1964,
47:
2425
<A NAME="RE08002SS-96E">96e </A>
Wick AE.
Felix D.
Gschwend-Steen K.
Eschenmoser A.
Helv.
Chim. Acta
1969,
52:
1030
<A NAME="RE08002SS-96F">96f </A>
Johnson WS.
Werthemann L.
Bartlett WR.
Brocksom TJ.
Li TT.
Faulkner DJ.
Peterson MR.
J. Am. Chem. Soc.
1970,
92:
741
<A NAME="RE08002SS-96G">96g </A>
Ireland RE.
Mueller RH.
J.
Am. Chem. Soc.
1972,
94:
5897
<A NAME="RE08002SS-96H">96h </A>
Ireland RE.
Willard AK.
Tetrahedron
Lett.
1975,
16:
3975
<A NAME="RE08002SS-96I">96i </A>
Ireland RE.
Mueller RH.
Willard AK.
J. Am. Chem. Soc.
1976,
98:
2868
<A NAME="RE08002SS-96J">96j </A>
Baldwin JE.
Walker JA.
J.
Chem. Soc., Chem. Commun.
1973,
117
<A NAME="RE08002SS-96K">96k </A>
Greuter H.
Lang RW.
Romann AJ.
Tetrahedron
Lett.
1988,
29:
3291
<A NAME="RE08002SS-96L">96l </A>
Malherbe R.
Bellus D.
Helv. Chim. Acta
1978,
61:
3096
<A NAME="RE08002SS-96M">96m </A>
Denmark SE.
Harmata MA.
J.
Am. Chem. Soc.
1982,
104:
4972
<A NAME="RE08002SS-96N">96n </A>
Denmark SE.
Harmata MA.
J. Org.
Chem.
1983,
48:
3369
<A NAME="RE08002SS-96O">96o </A>
Denmark SE.
Harmata MA.
Tetrahedron
Lett.
1984,
25:
1543
<A NAME="RE08002SS-96P">96p </A>
Bergmann E.
Corte H.
J. Chem. Soc.
1935,
1363
<A NAME="RE08002SS-96Q">96q </A>
Lauer WM.
Kilburn EI.
J.
Am. Chem. Soc.
1937,
59:
2586
<A NAME="RE08002SS-96R">96r </A>
Hurd CD.
Pollack MA.
J.
Am. Chem. Soc.
1938,
60:
1905
<A NAME="RE08002SS-96S">96s </A>
Hurd CD.
Pollack MA.
J.
Org. Chem.
1939,
4:
550
<A NAME="RE08002SS-96T">96t </A>
Arnold RT.
Searles S.
J.
Am. Chem. Soc.
1949,
71:
1150
<A NAME="RE08002SS-96U">96u </A>
Arnold RT.
Parham WE.
Dodson RM.
J. Am. Chem. Soc.
1949,
71:
2439
<A NAME="RE08002SS-96V">96v </A>
Burgstrahler AW.
Nordin IC.
J.
Am. Chem. Soc.
1961,
83:
198
<A NAME="RE08002SS-96W">96w </A>
Marbet R.
Saucy G.
Helv. Chim. Acta
1967,
50:
2091
<A NAME="RE08002SS-97A">97a </A>
Fehr C.
Galindo JA.
Angew.
Chem. Int. Ed.
2000,
39:
569 ; Angew. Chem.
2000 , 112 , 581
<A NAME="RE08002SS-97B">97b </A>
Hong JH.
Gao M.-Y.
Choi Y.
Cheng Y.-C.
Schinazi RF.
Chu CK.
Carbohydr. Res.
2000,
328:
37
<A NAME="RE08002SS-97C">97c </A>
Agami C.
Couty F.
Evano G.
Eur.
J. Org. Chem.
2002,
29
<A NAME="RE08002SS-97D">97d </A>
Görth FC.
Umland A.
Brückner R.
Eur. J. Org. Chem.
1998,
1055
<A NAME="RE08002SS-97E">97e </A>
Brenna E.
Fuganti C.
Grasselli P.
Serra S.
Eur. J. Org. Chem.
2001,
1349
<A NAME="RE08002SS-97F">97f </A>
Trost BM.
Lee CB.
J.
Am. Chem. Soc.
2001,
123:
3687
<A NAME="RE08002SS-97G">97g </A>
Corey EJ.
Guzman-Perez A.
Lazerwith SE.
J. Am. Chem. Soc.
1997,
119:
11769
<A NAME="RE08002SS-97H">97h </A>
Wood JL.
Moniz GA.
Pflum DA.
Stoltz BM.
Holubec AA.
Dietrich HJ.
J. Am. Chem. Soc.
1999,
121:
1748
<A NAME="RE08002SS-97I">97i </A>
He F.
Bo Y.
Altom JD.
Corey EJ.
J. Am. Chem. Soc.
1999,
121:
6771
<A NAME="RE08002SS-97J">97j </A>
Hodgson DM.
Gibbs AR.
Drew MGD.
J. Chem. Soc., Perkin Trans.
1
1999,
3579
<A NAME="RE08002SS-97K">97k </A>
Morimoto Y.
Takaishi M.
Kinoshita T.
Sakaguchi K.
Shibata K.
J.
Chem. Soc., Chem. Commun.
2002,
42
<A NAME="RE08002SS-97L">97l </A>
Goujon J.-Y.
Duval A.
Kirschleger B.
J. Chem.
Soc., Perkin Trans. 1
2002,
496
<A NAME="RE08002SS-97M">97m </A>
Roulland E.
Monneret C.
Florent J.-C.
J.
Org. Chem.
2002,
67:
4399
<A NAME="RE08002SS-97N">97n </A>
Angle SR.
Henry RM.
J.
Org. Chem.
1998,
63:
7490
<A NAME="RE08002SS-97O">97o </A>
Burke SD.
Sametz GM.
Org.
Lett.
1999,
1:
71
<A NAME="RE08002SS-97P">97p </A>
Mapp AK.
Heathcock CH.
J.
Org. Chem.
1999,
64:
23
<A NAME="RE08002SS-97Q">97q </A>
Hodgson DM.
Gibbs AR.
Synlett
1997,
657
<A NAME="RE08002SS-97R">97r </A>
Harrison JR.
Holmes AB.
Collins I.
Synlett
1999,
972
<A NAME="RE08002SS-97S">97s </A>
Schaus JV.
Jain N.
Panek JS.
Tetrahedron
2000,
56:
10263
<A NAME="RE08002SS-97T">97t </A>
Chandrasekhar S.
Venkat Reddy M.
Tetrahedron
2000,
56:
6339
<A NAME="RE08002SS-97U">97u </A>
Brenna E.
Caraccia N.
Fuganti F.
Fuganti D.
Grasselli P.
Tetrahedron: Asymmetry
1997,
8:
3801
<A NAME="RE08002SS-97V">97v </A>
Amat M.
Dolors Coil M.
Passarella D.
Bosch J.
Tetrahedron: Asymmetry
1997,
8:
2775
<A NAME="RE08002SS-97W">97w </A>
Konno T.
Kitazume T.
Tetrahedron: Asymmetry
1997,
8:
223
<A NAME="RE08002SS-97X">97x </A>
Guz NR.
Lorenz P.
Stermitz FR.
Tetrahedron Lett.
2001,
42:
6491
<A NAME="RE08002SS-97Y">97y </A>
Zhou B.
Edmondson S.
Padron J.
Danishefsky SJ.
Tetrahedron Lett.
2000,
41:
2039
<A NAME="RE08002SS-97Z">97z </A>
Ceccarelli S.
Piarulli U.
Gennari C.
Tetrahedron
Lett.
1999,
40:
153
<A NAME="RE08002SS-98A">98a </A>
Kazmaier U.
Schneider C.
Tetrahedron
Lett.
1998,
39:
817
<A NAME="RE08002SS-98B">98b </A>
Rutherford AP.
Hartley RC.
Tetrahedron
Lett.
2000,
41:
737
<A NAME="RE08002SS-98C">98c </A>
Paquette LA.
Gao Z.
Ni Z.
Smith GF.
Tetrahedron Lett.
1997,
38:
1271
<A NAME="RE08002SS-98D">98d </A>
Paquette LA.
Backhaus D.
Braun R.
Underiner TL.
Fuchs K.
J. Am. Chem. Soc.
1997,
119:
9662
<A NAME="RE08002SS-98E">98e </A>
Martnez AG.
Vilar ET.
Fraile AG.
Moya Cerero S.
Maroto BL.
Tetrahedron: Asymmetry
2002,
13:
17
<A NAME="RE08002SS-98F">98f </A>
Bonjoch J.
Sole D.
Chem. Rev.
2000,
100:
3455
<A NAME="RE08002SS-98G">98g </A>
Koch G.
Janser P.
Kottirsch G.
Romero-Giron E.
Tetrahedron Lett.
2002,
43:
4837
<A NAME="RE08002SS-98H">98h </A>
Chen YK.
Lurain AE.
Walsh PJ.
J. Am. Chem. Soc.
2002,
124:
12225
<A NAME="RE08002SS-98I">98i </A>
Hatcher MA.
Posner GH.
Tetrahedron
Lett.
2002,
43:
5009
<A NAME="RE08002SS-98J">98j </A>
Srikrishna A.
Anebouselvy K.
Tetrahedron Lett.
2002,
3:
2769