Zusammenfassung
Die Multiple Sklerose (MS) ist die häufigste entzündliche, demyelinisierende Erkrankung
des zentralen Nervensystems (ZNS). Sie ist durch multifokale, disseminierte Entzündungsherde,
sogenannte Plaques, in den myelinhaltigen Strukturen des ZNS charakterisiert. In der
Magnetresonanztomographie (MRT) sind multiple umschriebene, rundlich-ovale Läsionen
der weißen Substanz charakteristisch, die bevorzugt im periventrikulären Marklager,
an der Mark-Rindengrenze, im Hirnstamm und im Kleinhirn lokalisiert sind. Neuere Untersuchungen
zeigen, dass die sichtbaren Entmarkungsherde nur die Spitze des Eisbergs sind: Bereits
frühzeitig verursacht die MS neuroaxonale Schäden und zieht zudem das gesamte Hirnparenchym
einschließlich der normal erscheinenden weißen Substanz in Mitleidenschaft. Ausdruck
dieser Veränderungen sind stark hypointense Läsionen in T1-Gewichtung sowie eine frühzeitig beginnende Hirnvolumenminderung, die Reduktion des
neuronalen Markers N-acetylaspartat (NAA) in der Spektroskopie, ein verminderter Magnetisierungstransfer-Quotient
„magnetization transfer ratio” (MTR) und erleichterte Diffusion bzw. verminderte Diffusionsanisotropie.
Die MRT ist wichtiger Bestandteil der Diagnosestellung u. a. durch den Nachweis der
charakteristischen zeitlichen und räumlichen Disseminierung. Diagnostische Kriterien
erhöhen die Spezifität der sehr sensitiven MRT und erleichtern die Differenzierung
gegenüber anderen Erkrankungen mit multifokalen Veränderungen der weißen Substanz.
Abstract
Multiple sclerosis (MS) is the most common demyelinating inflammatory disease of the
central nervous system (CNS), presenting with multifocal, disseminated inflammatory
lesions referred to as plaques. Magnetic resonance imaging (MRI) typically depicts
multiple, round to oval, circumscript lesions predominantly involving periventricular
and subcortical white matter, brainstem and cerebellum. More recent investigations
have demonstrated that the macroscopically visible plaques only present the tip of
the iceberg: Already early in its course, MS causes neuroaxonal damage and diffusely
involves the entire brain parenchyma including normal appearing white matter. These
changes are reflected by strongly T1w hypointense lesions and atrophy of early onset, by reduction of the neuronal Marker
N-acetylaspartate (NAA) on spectroscopy, by a decrease of the magnetization transfer
ratio (MTR), by an increased in diffusibility and decreased anisotropy on diffusion-weighted
imaging (DWI). MRI imaging is an important tool in the diagnosis of MS by revealing
the characteristic spatial and temporal dissemination of the cerebral and spinal manifestations
of this disease. Diagnostic criteria increase the diagnostic specificity and allow
better differentiation from other diseases with multifocal white matter abnormalities.
Key words
Multiple sclerosis - inflammatory CNS diseases - demyelination - MRI
Literatur
- 1 Kurtzke J.
The epidemiology of multiple sclerosis. In: Raine C, McFarland H, Tourtellotte W (eds) Chapman & Hall 1997: 91-139
- 2
Ebers G C, Sadovnick A D, Risch N J.
A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative
Study Group (see comments).
Nature.
1995;
377
150-151
- 3
Noseworthy J H, Lucchinetti C, Rodriguez M, Weinshenker B G.
Multiple sclerosis.
N Engl J Med.
2000;
343
938-952
- 4
Kieseier B C, Storch M K, Archelos J J, Martino G, Hartung H P.
Effector pathways in immune mediated central nervous system demyelination.
Curr Opin Neurol.
1999;
12
343-336
- 5 van der Knaap M S, Valk J.
Magnetic resonance of myelin, myelination, and myelin disorders. 2nd edition. Berlin, Heidelberg, New York; Springer 1995
- 6
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H.
Heterogenity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.
Ann Neurol.
2000;
47
707-717
- 7
Weinshenker B.
The natural history of multiple sclerosis.
Neurol Clin.
1995;
13
119-146
- 8
Weinshenker B G, Bass B, Rice G P, Noseworthy J, Carriere W, Baskerville J, Ebers G C.
The natural history of multiple sclerosis: a geographically based study. I. Clinical
course and disability. 2. Predictive value of the early clinical course.
Brain.
1989;
112
133-146
1419-1428
- 9
Paty D W, Oger J J, Kastrukoff L F, Hashimoto S A, Hooge J P, Eisen A A, Eisen K A,
Purves S J, Low M D, Brandejs V. et al .
MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation,
evoked potentials, oligoclonal banding, and CT.
Neurology.
1988;
38
180-185
- 10
Ormerod I E, Miller D H, McDonald W I, du Boulay E P, Rudge P, Kendall B E, Moseley I F,
Johnson G, Tofts P S, Halliday A M. et al .
The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological
lesions. A quantitative study.
Brain.
1987;
110
1579-1616
- 11
Fog T.
The topography of plaques in multiple sclerosis.
Acta Neurol Scand.
1965;
15
1-161
- 12
Gean-Marton A D, Vezina L G, Marton K I, Stimac G K, Peyster R G, Taveras J M, Davis K R.
Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis.
Radiology.
1991;
180
215-221
- 13
Willoughby E W, Grochowski E, Li D K, Oger J, Kastrukoff L F, Paty D W.
Serial magnetic resonance scanning in multiple sclerosis: a second prospective study
in relapsing patients.
Ann Neurol.
1989;
25
43-49
- 14
Brück W, Bitsch A, Kolenda H, Brück Y, Stiefel M, Lassmann H.
Inflammatory central nervous system demyelination: correlation of magnetic resonance
imaging findings with lesion pathology.
Ann Neurol.
1997;
42
783-793
- 15
Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Brück W.
A longitudinal MRI study of histophathology defined hypointense multiple sclerosis.
Ann Neurol.
2001;
49
793-796
- 16
van Walderveen M A, Kamphorst W, Scheltens P, van Waesberghe J H, Ravid R, Valk J,
Polman C H, Barkhof F.
Histophatologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis.
Neurology.
1998;
50
1282-1288
- 17
Barkhof F, Scheltens P, Frequin S T, Nauta J J, Tas M W, Valk J, Hommes O R.
Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs. clinical
findings in determining disease activity.
Am J Roentgenol.
1992;
159
1041-1047
- 18
He J, Grossman R I, Ge Y, Mannon L J.
Enhancing patterns in multiple sclerosis: evolution and persistence.
Am J Neuroradiol.
2001;
22
664-669
- 19
Lai M, Hodgson T, Gawne-Cain M, Webb S, MacManus D, McDonald W I, Thompson A J, Miller D H.
A preliminary study into the sensitivity of disease activity detection by serial weekly
magnetic resonance imaging in multiple sclerosis.
J Neurol Neurosurg Psych.
1996;
60
339-341
- 20
Goodkin D E, Rooney W D, Sloan R, Bacchetti P, Gee L, Vermathen M, Waubant E, Abundo M,
Majumdar S, Nelson S. et al .
A serial study of new MS lesions and the white matter from which they arise.
Neurology.
1998;
51
1689-1697
- 21
Werring D J, Clark C A, Barker G J, Thompson A J, Miller D H.
Diffusion tensor imaging of lesions and normal-appearing white matter in multiple
sclerosis.
Neurology.
1999;
52
1626-1632
- 22
Filippi M, Rocca M A, Martino G, Horsfield M A, Comi G.
Magnetization transfer changes in the normal appearing white matter precede the appearance
of enhancing lesions in patients with multiple sclerosis.
Ann Neurol.
1998;
43
809-814
- 23
O'Riordan J I, Thompson A J, Kingsley D PE, MacManus D G, Kendall B E, Rudge P, McDonald W I,
Miller D H.
The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year
follow-up.
Brain.
1998;
121
495-503
- 24
Kidd D, Thorpe J W, Thompson A J, Kendall B E, Moseley I F, MacManus D G, McDonald W I,
Miller D H.
Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple
sclerosis.
Neurology.
1993;
43
2632-2637
- 25
Lycklama a' Nijeholt G J, Barkhof F, Scheltens P, Castelijns J A, Ader H, Van Waesberghe J H,
Polman C, Jongen S J, Valk J.
MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability.
Am J Neuroradiol.
1997;
18
1041-1048
- 26
Thorpe J W, Kidd D, Kendall B E, Tofts P S, Barker G J, Thompson A J, MacManus D G,
McDonald W I, Miller D H.
Spinal cord MRI using multi-array coils and fast spin echo. I. Technical aspects and
findings in healthy adults.
Neurology.
1993;
43
2625-2631
- 27
Yetkin F Z, Haughton V M, Papke R A, Fischer M E, Rao S M.
Multiple sclerosis: specificity of MR for diagnosis.
Radiology.
1991;
178
447-451
- 28
Thorpe J W, Kidd D, Moseley I F, Kenndall B E, Thompson A J, MacManus D G, McDonald W I,
Miller D H.
Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting
multiple sclerosis.
Neurology.
1996;
46
373-378
- 29
Trapp B D, Peterson J, Ransohoff R M, Rudick R, Mork S, Bo L.
Axonal transection in the lesions of multiple sclerosis.
N Engl J Med.
1998;
338
278-285.36
, (z. B. Arnold 1990)
- 30 DeStefano N, Narayanan S, Francis G S, Arnaoutelis R, Tartaglia M C, Antel J P,
Matthews P M, Arnold D L. Evidence of axonal damage in the early stages of multiple
sclerosis and its relevance to disability. Arch Neurol 2001
- 31
Matthews P M, De Stefano N, Narayanan S. et al .
Putting magnetic resonance spectroscopy studies in context: axonal damage and disability
in multiple sclerosis.
Semin Neurol.
1998;
18
327-336
- 32
van Waesberghe J H, Kamphorst W, De Groot C J, van Walderveen M A, Castelijns J A,
Ravid R, Lycklama A, Nijeholt G J, van der Valk P, Polman C H, Thompson A J, Barkhos F.
Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into
substrates of disability.
Ann Neurol.
1999;
46
747-754
- 33
van Walderveen M A, Barkhof F, Pauwels P J, van Schijndel R A, Polman C H, Castelijns J A.
Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic
resonance spectroscopy.
Ann Neurol.
1999;
46
79-87
- 34
Simon J H, Jacobs L, Kinkel R P.
Transcallosal bands: A sign of neuronal tract degeneration in early MS?.
Neurology.
2001;
57
1888-1890
- 35
Rudick R A, Fisher E, Lee J C, Simon J, Jacobs L.
Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting
MS. Multiple Sclerosis Collaborative Research Group.
Neurology.
1999;
53
1698-1704
- 36
Chard D T, Griffin C M, Parker G JM, Kapoor R, Thompson A J, Miller D H.
Brain atrophy in early relapsing-remitting multiple sclerosis.
Brain.
2002;
125
327-337
- 37
Evangelou N, Esiri M M, Smith S, Palace J, Matthews P M.
Quantitative pathological evidence for axonal loss in normal appearing white matter
in multiple sclerosis.
Ann Neurol.
2000;
47
391-395
- 38
De Stefano N, Narayanan S, Matthews P M, Francis G S, Antel J P, Arnold D L.
In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of
the type seen in multiple sclerosis.
Brain.
1999;
122
(Pt 10)
1933-1939
- 39
Guo A C, Jewells V L, Provenzale J M.
Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion
tensor MR imaging and magnetization transfer imaging.
Am J Neuroradiol.
2001;
22
1893-1900
- 40
Loevner L A, Grossman R I, Cohen J A, Lexa F J, Kessler D, Kolson D L.
Microscopic disease in normal-appearing white matter on conventional MR images in
patients with multiple sclerosis: assessment with magnetization-transfer measurements.
Radiology.
1995;
196
511-515
- 41
Allen I V, McKeown S R.
A histological, histochemical and biochemical study of the macroscopically normal
white matter in multiple sclerosis.
J Neurol Sci.
1979;
41
81-91
- 42
Gawne-Cain M L, O'Riordan J I, Thompson A J. et al .
Multiple sclerosis lesion detection in brain: a comparison of fast fluid-attenuated
inversion recovery and conventional T2-weighted dual spin echo.
Neurology.
1997;
49
364-370
- 43
Schumacher G, Beebe G, Kibler R F, Kurland L T, Kurtzke J F, McDowell F. et al .
Problems of experimental trials of therapy in multiple sclerosis: report of experimental
trials of therapy in multiple sclerosis.
Ann NY Acad Sci.
1965;
122
552-568
- 44
Poser C M, Paty D W, Scheinberg L, McDonald W I, Davis F A, Ebers G C, Johnson K B,
Sibley W A, Silberberg D H, Tourtellotte W W.
New diagnostic criteria for multiple sclerosis: guidelines for research protocols.
Ann Neurol.
1983;
13
231-239
- 45
Barkhof F, Filippi M, Miller D, Scheltens P, Campi A, Polman C.
Comparison of MRI criteria at first presentation to predict conversion to clinically
definite multiple sclerosis.
Brain.
1997;
120
2059-2069
- 46
Tintoré M, Rovira A, Martinez M, Rio J, Diaz-Villoslada P, Brieva L.
Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict
conversion to clinically definite multiple sclerosis.
Am J Neuroradiol.
2000;
21
702-706
- 47
McDonald W, Compston A, Edan G, Goodkin D, Hartung H, Lublin F, McFarland H, Paty D,
Polman C, Reingold S. et al .
Recommended diagnostic criteria for multiple sclerosis: guidelines from the international
panel on the diagnosis of multiple sclerosis.
Ann Neurol.
2001;
50
121-127
- 48
Choi K H, Lee K S, Chung S O, Park J M, Kim Y J, Kim H S, Shinn K S.
Idiopathic transverse myelitis: MR characteristics.
Am J Neuroradiol.
1996;
18
1151-1160
- 49
Scolding N.
The differential diagnosis of multiple sclerosis.
J Neurol Neurosurg Psych.
2001;
71
119-115
- 50
Dichgans M, Gasser T.
CADASIL: Klinische Aspekte und Diagnose.
Dtsch Med Wochenschr.
1998;
123
979-981
- 51
Schwarz S, Mohr A, Knauth M, Wildemann B, Storch-Hagenlocher B.
Acute disseminated encephalomyelitis: a follow-up of 40 adult patients.
Neurology.
2001;
56
1313-1318
Dr. med. I. Harting
Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg
Im Neuenheimer Feld 400
69120 Heidelberg
Phone: + 49-622-567564
Fax: + 49-6221-564673
Email: inga_harting@med.uni-heidelberg.de