Rofo 2003; 175(5): 613-622
DOI: 10.1055/s-2003-39198
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Bildgebung, Diagnosekriterien und Differenzialdiagnose der Multiplen Sklerose

Multiple Sclerosis: Imaging, Diagnostic Criteria and Differential DiagnosisI.  Harting1 , J.  Sellner2 , U.  Meyding-Lamadé2 , K.  Sartor1
  • 1Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg
  • 2Abteilung Neurologie, Neurologische Klinik, Universitätsklinikum Heidelberg
Herrn Professor Günther zum 60. Geburtstag gewidmet.
Further Information

Publication History

Publication Date:
13 May 2003 (online)

Zusammenfassung

Die Multiple Sklerose (MS) ist die häufigste entzündliche, demyelinisierende Erkrankung des zentralen Nervensystems (ZNS). Sie ist durch multifokale, disseminierte Entzündungsherde, sogenannte Plaques, in den myelinhaltigen Strukturen des ZNS charakterisiert. In der Magnetresonanztomographie (MRT) sind multiple umschriebene, rundlich-ovale Läsionen der weißen Substanz charakteristisch, die bevorzugt im periventrikulären Marklager, an der Mark-Rindengrenze, im Hirnstamm und im Kleinhirn lokalisiert sind. Neuere Untersuchungen zeigen, dass die sichtbaren Entmarkungsherde nur die Spitze des Eisbergs sind: Bereits frühzeitig verursacht die MS neuroaxonale Schäden und zieht zudem das gesamte Hirnparenchym einschließlich der normal erscheinenden weißen Substanz in Mitleidenschaft. Ausdruck dieser Veränderungen sind stark hypointense Läsionen in T1-Gewichtung sowie eine frühzeitig beginnende Hirnvolumenminderung, die Reduktion des neuronalen Markers N-acetylaspartat (NAA) in der Spektroskopie, ein verminderter Magnetisierungstransfer-Quotient „magnetization transfer ratio” (MTR) und erleichterte Diffusion bzw. verminderte Diffusionsanisotropie. Die MRT ist wichtiger Bestandteil der Diagnosestellung u. a. durch den Nachweis der charakteristischen zeitlichen und räumlichen Disseminierung. Diagnostische Kriterien erhöhen die Spezifität der sehr sensitiven MRT und erleichtern die Differenzierung gegenüber anderen Erkrankungen mit multifokalen Veränderungen der weißen Substanz.

Abstract

Multiple sclerosis (MS) is the most common demyelinating inflammatory disease of the central nervous system (CNS), presenting with multifocal, disseminated inflammatory lesions referred to as plaques. Magnetic resonance imaging (MRI) typically depicts multiple, round to oval, circumscript lesions predominantly involving periventricular and subcortical white matter, brainstem and cerebellum. More recent investigations have demonstrated that the macroscopically visible plaques only present the tip of the iceberg: Already early in its course, MS causes neuroaxonal damage and diffusely involves the entire brain parenchyma including normal appearing white matter. These changes are reflected by strongly T1w hypointense lesions and atrophy of early onset, by reduction of the neuronal Marker N-acetylaspartate (NAA) on spectroscopy, by a decrease of the magnetization transfer ratio (MTR), by an increased in diffusibility and decreased anisotropy on diffusion-weighted imaging (DWI). MRI imaging is an important tool in the diagnosis of MS by revealing the characteristic spatial and temporal dissemination of the cerebral and spinal manifestations of this disease. Diagnostic criteria increase the diagnostic specificity and allow better differentiation from other diseases with multifocal white matter abnormalities.

Literatur

  • 1 Kurtzke J. The epidemiology of multiple sclerosis. In: Raine C, McFarland H, Tourtellotte W (eds) Chapman & Hall 1997: 91-139
  • 2 Ebers G C, Sadovnick A D, Risch N J. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group (see comments).  Nature. 1995;  377 150-151
  • 3 Noseworthy J H, Lucchinetti C, Rodriguez M, Weinshenker B G. Multiple sclerosis.  N Engl J Med. 2000;  343 938-952
  • 4 Kieseier B C, Storch M K, Archelos J J, Martino G, Hartung H P. Effector pathways in immune mediated central nervous system demyelination.  Curr Opin Neurol. 1999;  12 343-336
  • 5 van der Knaap M S, Valk J. Magnetic resonance of myelin, myelination, and myelin disorders. 2nd edition. Berlin, Heidelberg, New York; Springer 1995
  • 6 Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogenity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.  Ann Neurol. 2000;  47 707-717
  • 7 Weinshenker B. The natural history of multiple sclerosis.  Neurol Clin. 1995;  13 119-146
  • 8 Weinshenker B G, Bass B, Rice G P, Noseworthy J, Carriere W, Baskerville J, Ebers G C. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. 2. Predictive value of the early clinical course.  Brain. 1989;  112 133-146 1419-1428
  • 9 Paty D W, Oger J J, Kastrukoff L F, Hashimoto S A, Hooge J P, Eisen A A, Eisen K A, Purves S J, Low M D, Brandejs V. et al . MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT.  Neurology. 1988;  38 180-185
  • 10 Ormerod I E, Miller D H, McDonald W I, du Boulay E P, Rudge P, Kendall B E, Moseley I F, Johnson G, Tofts P S, Halliday A M. et al . The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study.  Brain. 1987;  110 1579-1616
  • 11 Fog T. The topography of plaques in multiple sclerosis.  Acta Neurol Scand. 1965;  15 1-161
  • 12 Gean-Marton A D, Vezina L G, Marton K I, Stimac G K, Peyster R G, Taveras J M, Davis K R. Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis.  Radiology. 1991;  180 215-221
  • 13 Willoughby E W, Grochowski E, Li D K, Oger J, Kastrukoff L F, Paty D W. Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients.  Ann Neurol. 1989;  25 43-49
  • 14 Brück W, Bitsch A, Kolenda H, Brück Y, Stiefel M, Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology.  Ann Neurol. 1997;  42 783-793
  • 15 Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Brück W. A longitudinal MRI study of histophathology defined hypointense multiple sclerosis.  Ann Neurol. 2001;  49 793-796
  • 16 van Walderveen M A, Kamphorst W, Scheltens P, van Waesberghe J H, Ravid R, Valk J, Polman C H, Barkhof F. Histophatologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis.  Neurology. 1998;  50 1282-1288
  • 17 Barkhof F, Scheltens P, Frequin S T, Nauta J J, Tas M W, Valk J, Hommes O R. Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs. clinical findings in determining disease activity.  Am J Roentgenol. 1992;  159 1041-1047
  • 18 He J, Grossman R I, Ge Y, Mannon L J. Enhancing patterns in multiple sclerosis: evolution and persistence.  Am J Neuroradiol. 2001;  22 664-669
  • 19 Lai M, Hodgson T, Gawne-Cain M, Webb S, MacManus D, McDonald W I, Thompson A J, Miller D H. A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis.  J Neurol Neurosurg Psych. 1996;  60 339-341
  • 20 Goodkin D E, Rooney W D, Sloan R, Bacchetti P, Gee L, Vermathen M, Waubant E, Abundo M, Majumdar S, Nelson S. et al . A serial study of new MS lesions and the white matter from which they arise.  Neurology. 1998;  51 1689-1697
  • 21 Werring D J, Clark C A, Barker G J, Thompson A J, Miller D H. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis.  Neurology. 1999;  52 1626-1632
  • 22 Filippi M, Rocca M A, Martino G, Horsfield M A, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis.  Ann Neurol. 1998;  43 809-814
  • 23 O'Riordan J I, Thompson A J, Kingsley D PE, MacManus D G, Kendall B E, Rudge P, McDonald W I, Miller D H. The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up.  Brain. 1998;  121 495-503
  • 24 Kidd D, Thorpe J W, Thompson A J, Kendall B E, Moseley I F, MacManus D G, McDonald W I, Miller D H. Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis.  Neurology. 1993;  43 2632-2637
  • 25 Lycklama a' Nijeholt G J, Barkhof F, Scheltens P, Castelijns J A, Ader H, Van Waesberghe J H, Polman C, Jongen S J, Valk J. MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability.  Am J Neuroradiol. 1997;  18 1041-1048
  • 26 Thorpe J W, Kidd D, Kendall B E, Tofts P S, Barker G J, Thompson A J, MacManus D G, McDonald W I, Miller D H. Spinal cord MRI using multi-array coils and fast spin echo. I. Technical aspects and findings in healthy adults.  Neurology. 1993;  43 2625-2631
  • 27 Yetkin F Z, Haughton V M, Papke R A, Fischer M E, Rao S M. Multiple sclerosis: specificity of MR for diagnosis.  Radiology. 1991;  178 447-451
  • 28 Thorpe J W, Kidd D, Moseley I F, Kenndall B E, Thompson A J, MacManus D G, McDonald W I, Miller D H. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis.  Neurology. 1996;  46 373-378
  • 29 Trapp B D, Peterson J, Ransohoff R M, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis.  N Engl J Med. 1998;  338 278-285.36 , (z. B. Arnold 1990)
  • 30 DeStefano N, Narayanan S, Francis G S, Arnaoutelis R, Tartaglia M C, Antel J P, Matthews P M, Arnold D L. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001
  • 31 Matthews P M, De Stefano N, Narayanan S. et al . Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis.  Semin Neurol. 1998;  18 327-336
  • 32 van Waesberghe J H, Kamphorst W, De Groot C J, van Walderveen M A, Castelijns J A, Ravid R, Lycklama A, Nijeholt G J, van der Valk P, Polman C H, Thompson A J, Barkhos F. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability.  Ann Neurol. 1999;  46 747-754
  • 33 van Walderveen M A, Barkhof F, Pauwels P J, van Schijndel R A, Polman C H, Castelijns J A. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy.  Ann Neurol. 1999;  46 79-87
  • 34 Simon J H, Jacobs L, Kinkel R P. Transcallosal bands: A sign of neuronal tract degeneration in early MS?.  Neurology. 2001;  57 1888-1890
  • 35 Rudick R A, Fisher E, Lee J C, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group.  Neurology. 1999;  53 1698-1704
  • 36 Chard D T, Griffin C M, Parker G JM, Kapoor R, Thompson A J, Miller D H. Brain atrophy in early relapsing-remitting multiple sclerosis.  Brain. 2002;  125 327-337
  • 37 Evangelou N, Esiri M M, Smith S, Palace J, Matthews P M. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis.  Ann Neurol. 2000;  47 391-395
  • 38 De Stefano N, Narayanan S, Matthews P M, Francis G S, Antel J P, Arnold D L. In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis.  Brain. 1999;  122 (Pt 10) 1933-1939
  • 39 Guo A C, Jewells V L, Provenzale J M. Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging.  Am J Neuroradiol. 2001;  22 1893-1900
  • 40 Loevner L A, Grossman R I, Cohen J A, Lexa F J, Kessler D, Kolson D L. Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements.  Radiology. 1995;  196 511-515
  • 41 Allen I V, McKeown S R. A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis.  J Neurol Sci. 1979;  41 81-91
  • 42 Gawne-Cain M L, O'Riordan J I, Thompson A J. et al . Multiple sclerosis lesion detection in brain: a comparison of fast fluid-attenuated inversion recovery and conventional T2-weighted dual spin echo.  Neurology. 1997;  49 364-370
  • 43 Schumacher G, Beebe G, Kibler R F, Kurland L T, Kurtzke J F, McDowell F. et al . Problems of experimental trials of therapy in multiple sclerosis: report of experimental trials of therapy in multiple sclerosis.  Ann NY Acad Sci. 1965;  122 552-568
  • 44 Poser C M, Paty D W, Scheinberg L, McDonald W I, Davis F A, Ebers G C, Johnson K B, Sibley W A, Silberberg D H, Tourtellotte W W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols.  Ann Neurol. 1983;  13 231-239
  • 45 Barkhof F, Filippi M, Miller D, Scheltens P, Campi A, Polman C. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis.  Brain. 1997;  120 2059-2069
  • 46 Tintoré M, Rovira A, Martinez M, Rio J, Diaz-Villoslada P, Brieva L. Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis.  Am J Neuroradiol. 2000;  21 702-706
  • 47 McDonald W, Compston A, Edan G, Goodkin D, Hartung H, Lublin F, McFarland H, Paty D, Polman C, Reingold S. et al . Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis.  Ann Neurol. 2001;  50 121-127
  • 48 Choi K H, Lee K S, Chung S O, Park J M, Kim Y J, Kim H S, Shinn K S. Idiopathic transverse myelitis: MR characteristics.  Am J Neuroradiol. 1996;  18 1151-1160
  • 49 Scolding N. The differential diagnosis of multiple sclerosis.  J Neurol Neurosurg Psych. 2001;  71 119-115
  • 50 Dichgans M, Gasser T. CADASIL: Klinische Aspekte und Diagnose.  Dtsch Med Wochenschr. 1998;  123 979-981
  • 51 Schwarz S, Mohr A, Knauth M, Wildemann B, Storch-Hagenlocher B. Acute disseminated encephalomyelitis: a follow-up of 40 adult patients.  Neurology. 2001;  56 1313-1318

Dr. med. I. Harting

Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg

Im Neuenheimer Feld 400

69120 Heidelberg

Phone: + 49-622-567564

Fax: + 49-6221-564673

Email: inga_harting@med.uni-heidelberg.de

    >