References
<A NAME="RU07303ST-1A">1a</A>
Tsuji J.
Palladium
Reagents and Catalysts
John Wiley and Sons,
Inc.;
New York:
1995.
p.125-252
<A NAME="RU07303ST-1B">1b</A>
Li JJ.
Gribble GW.
Palladium in Heteocyclic Chemistry
Pergamon;
Oxford:
2000.
<A NAME="RU07303ST-1C">1c</A>
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem.
Rev.
2002,
102:
1359
<A NAME="RU07303ST-2A">2a</A>
Harayama T.
Akiyama T.
Akamatsu H.
Kawano K.
Abe H.
Takeuchi Y.
Synthesis
2001,
444
<A NAME="RU07303ST-2B">2b</A>
Harayama T.
Akamatsu H.
Okamura K.
Miyagoe T.
Akiyama T.
Abe H.
Takeuchi Y.
J.
Chem. Soc., Perkin Trans. 1
2001,
523
<A NAME="RU07303ST-3A">3a</A>
Harayama T.
Shibaike K.
Heterocycles
1998,
49:
191
<A NAME="RU07303ST-3B">3b</A>
Harayama T.
Akiyama T.
Nakano Y.
Nishioka H.
Abe H.
Takeuchi Y.
Chem. Pharm. Bull.
2002,
50:
519
<A NAME="RU07303ST-4">4</A>
Harayama T.
Akiyama T.
Nakano Y.
Shibaike K.
Akamatsu H.
Hori A.
Abe H.
Takeuchi Y.
Synthesis
2002,
237
<A NAME="RU07303ST-5">5</A>
Harayama T.
Sato T.
Nakano Y.
Abe H.
Takeuchi Y.
Heterocycles
2003,
59:
293
<A NAME="RU07303ST-6">6</A>
Harayama T.
Hori A.
Nakano Y.
Akiyama T.
Abe H.
Takeuchi Y.
Heterocycles
2002,
58:
159
<A NAME="RU07303ST-7A">7a</A>
Cope AC.
Friedrich EC.
J. Am. Chem. Soc.
1968,
90:
909
<A NAME="RU07303ST-7B">7b</A>
Bruce MI.
Angew. Chem., Int. Ed. Engl.
1977,
16:
73
<A NAME="RU07303ST-8">8</A>
Dyker G.
Angew.
Chem. Int. Ed.
1999,
38:
1698
<A NAME="RU07303ST-9A">9a</A>
Clark PW.
Dyke SF.
J.
Organomet. Chem.
1985,
243:
389
<A NAME="RU07303ST-9B">9b</A>
Martín-Mature B.
Matero C.
Cárdenas DJ.
Echavarren AM.
Chem.-Eur.
J.
2001,
7:
2341
<A NAME="RU07303ST-9C">9c</A>
Dyker G.
Chem.
Ber.
1997,
243:
1567
<A NAME="RU07303ST-9D">9d</A>
Jia C.
Piao D.
Oyamada J.
Lu W.
Kitamura T.
Fujiwara Y.
Science
2000,
287:
1992
<A NAME="RU07303ST-10">10</A>
6-Bromo-3-isopropoxy-2-methoxybenzyl
bromide (6a) was prepared from 3-isopropoxy-2-methoxybenzaldehyde
[11]
in 54% yield
via reduction with NaBH4 and bromination with Br2.
<A NAME="RU07303ST-11">11</A>
Banwell MG.
Flynn BL.
Stewart SG.
J. Org. Chem.
1998,
63:
9139
<A NAME="RU07303ST-12">12</A>
Selected 1H NMR
data (200 MHz, CDCl3): Compound 9a: δ = 3.01
(3 H, s, N-Me), 6.57 (1 H, br. d, J = 7.0
Hz), 6.86 (1 H, d, J = 8.5
Hz), 7.02 (1 H, s), 7.08 (1 H, br. d, J = 7.0
Hz), 7.14 (1 H, t, J = 7.0
Hz), 7.41 (1 H, d, J = 8.5
Hz). Compound 11a: δ = 2.75
(3 H, s, N-Me), 7.11 (1 H, s), 7.75 (1 H, s).
<A NAME="RU07303ST-13">13</A>
Compound 13 was
prepared from 6-bromo-3-hydroxy-2-methoxybenzaldehyde
[14]
in 48% yield
via etherification with isopropyl bromide, reductive alkylation
with 6,7-methylenedioxy-1-naphthylamine and NaBH4, and
N-acetylation.
<A NAME="RU07303ST-14">14</A>
Nakanishi T.
Suzuki M.
J. Prod. Chem.
1998,
61:
1263
<A NAME="RU07303ST-15">15</A>
Selected 1H NMR
data (200 MHz, CDCl3): Compound 14: δ = 3.80
(1 H, d, J = 15.4
Hz, ArCH
AHBN),
6.25 (1 H, d, J = 15.4
Hz, ArCHA
H
BN),
6.93 (1 H, d, J = 8.6
Hz), 7.13 (1 H, s), 7.28 (1 H, s), 7.52 (1 H, d, J = 8.6
Hz), 7.62 (1 H, d, J = 8.6
Hz), 7.69 (1 H, d, J = 8.6
Hz).Compound 15: δ = 3.93
(1 H, d, J = 15.8
Hz, ArCH
AHBN),
5.97 (1 H, d, J = 15.8
Hz, ArCHA
H
BN),
6.84 (1 H, d, J = 8.8
Hz), 7.10 (1 H, dd, J = 7.6,
1.4 Hz), 7.17 (1 H, s), 7.29 (1 H, t, J = 7.8 Hz),
7.59 (1 H, d, J = 8.8
Hz), 7.61 (1 H, dd, J = 7.8,
1.4 Hz).
<A NAME="RU07303ST-16">16</A>
6,7-Dimethoxy-N-methyl-1-naphthylamine
(7f) and 7-isopropoxy-6-methoxy-N-methyl-1-naphthylamine (7h) were
prepared from 6,7-dimethoxy-1-naphthylamine
[13]
and 7-isopropoxy-6-methoxy-1-naphthylamine
[17]
in 86% and 76% yields,
respectively, via trifluoroacetylation, methylation with MeI and
hydrolysis with alkaline aqueous EtOH.
<A NAME="RU07303ST-17">17</A>
Stermitz FR.
Gillespie JP.
Amoros LG.
Romero R.
Stermitz TA.
J. Med. Chem.
1975,
18:
708
<A NAME="RU07303ST-18">18</A>
Selected 1H NMR
data (200 MHz, CDCl3): Compound 9b: δ = 3.05
(3 H, s, N-Me). Compound 9c: δ = 2.97
(3 H, s, N-Me), 7.06 (1 H, s). Compound 9d: δ = 3.08
(3 H, s, N-Me), 6.92 (1 H, d, J = 8.6
Hz), 7.14 (1 H, d, J = 8.6
Hz). Compound 9e: δ = 3.00
(3 H, s, N-Me), 6.88 (1 H, d, J = 8.6 Hz),
7.03 (1 H, s), 7.45 (1 H, d, J = 8.6
Hz). Compound 9f: δ = 2.98
(3 H, s, N-Me), 3.48 (3 H, s, OMe), 7.07 (1 H, s). Compound 9g: δ = 3.03
(3 H, s, N-Me), 3.48 (3 H, s, OMe), 6.85 (1 H, d, J = 8.8
Hz), 7.03 (1 H, s), 7.27 (1 H, d, J = 8.8 Hz).
<A NAME="RU07303ST-19">19</A>
Selected 1H NMR
data (200 MHz, CDCl3): Compound 10f: δ = 2.65
(3 H, s, N-Me), 7.14 (1 H, s), 7.54 (1 H, d, J = 8.6 Hz),
7.66 (1 H, s), 7.79 (1 H, d, J = 8.6
Hz). Compound 10g: Mp 180-183 °C
(lit.
[20]
186-188 °C).
Compound 10h: δ = 2.63
(3 H, s, N-Me), 7.14 (1 H, s), 7.53 (1 H, d, J = 8.6 Hz),
7.69 (1 H, s), 7.78 (1 H, d, J = 8.6
Hz). Compound 10i: δ = 2.62
(3 H, s, N-Me), 6.94 (1 H, d, J = 8.4
Hz), 7.13 (1 H, s), 7.50 (1 H, d, J = 8.4
Hz), 7.51 (1 H, d, J = 8.6
Hz), 7.69 (1 H, s), 7.71 (1 H, d, J = 8.6
Hz).
<A NAME="RU07303ST-20">20</A>
Wu S.-J.
Chen I.-S.
Chern C.-Y.
Teng C.-M.
Wu T.-S.
J.
Chin. Chem. Soc.
1996,
43:
195
<A NAME="RU07303ST-21">21</A>
Selected 1H NMR
data (200 MHz, CDCl3): Compound 11f: δ = 2.82
(3 H, s, N-Me), 7.04 (1 H, dd, J = 7.4,
1.2 Hz), 7.13 (1 H, s), 7.63 (1 H, s). Compound 11g: δ = 2.84
(3 H, s, N-Me), 6.86 (1 H, dd, J = 8.0,
1.4 Hz), 7.12 (1 H, s), 7.59 (1 H, s). Compound 11h: δ = 2.81
(3 H, s, N-Me), 7.02 (1 H, dd, J = 7.6,
1.2 Hz), 7.13 (1 H, s), 7.62 (1 H, s). Compound 11i: δ = 2.84
(3 H, s, N-Me), 6.87 (1 H, dd, J = 8.0,
1.2 Hz), 7.11 (1 H, s), 7.56 (1 H, s). Compound 12g: δ = 6.56
(1 H, br d, J = 7.2
Hz), 7.02 (1 H, s), 7.10 (1 H, s). Compound 12h: δ = 6.55
(1 H, dd, J = 7.0,
1.4 Hz), 7.12 (1 H, s), 7.18 (1 H, s). Compound 12i: δ = 6.60
(1 H, dd, J = 7.4,
1.2 Hz), 7.01 (1 H, s), 7.11 (1 H, s).
<A NAME="RU07303ST-22A">22a</A>
Vila JM.
Suarez A.
Pereira MT.
Gayoso E.
Gayoso M.
Polyhedron
1987,
6:
1003
<A NAME="RU07303ST-22B">22b</A>
Teijido B.
Fernández A.
López-Torres M.
Castro-Juiz S.
Suárez A.
Ortigueira JM.
Vila JM.
Fernández JJ.
J.
Organomet. Chem.
2000,
598:
71