Semin Vasc Med 2003; 03(2): 147-162
DOI: 10.1055/s-2003-40673
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Role of Platelets in the Pathophysiology of Acute Coronary Syndrome

Steffen Massberg, Christian Schulz, Meinrad Gawaz
  • Medizinische Klinik und Poliklinik, Klinikum rechts der Isar and Deutsches Herzzentrum, Technische Universität München, Munich, Germany
Further Information

Publication History

Publication Date:
18 July 2003 (online)


Coronary atherosclerosis is the primary cause of heart diseases in industrialized nations. It has now become clear that coronary atherosclerosis is not simply an inevitable consequence of aging but rather a chronic inflammatory process that can be converted into an acute clinical event by plaque rupture and arterial thrombosis. It is well recognized that platelets play a key role in thrombotic vascular occlusion at the ruptured coronary atherosclerotic plaque, leading to acute ischemic episodes, the acute coronary syndromes (ACSs). In addition, both embolization of platelet aggregates and direct, receptor-mediated platelet adhesion to the postischemic microvascular surface result in obstruction and impairment of coronary microcirculation. Such microvascular disturbance may lead to significant additional tissue injury and aggravate myocardial contractile dysfunction. Novel antiplatelet strategies have contributed substantially to improve the outcome of patients with ACSs. However, the availability of new investigative tools, including genetically modified mouse models of disease, has demonstrated that platelets not only contribute to acute thrombotic vascular occlusion but also participate in the inflammatory and matrix-degrading processes of coronary atherosclerosis itself. Platelet- endothelial cell interactions at lesion-prone sites might trigger an inflammatory response in the vessel wall early in the genesis of atherosclerosis and contribute to destabilization of advanced atherosclerotic lesions. Thus, recent progress in defining the complex multistep process that promotes firm arrest of platelets to the (sub-) endothelium and initiates subsequent platelet activation may lead to the development of new antiplatelet strategies that provide an efficacious prophylactic intervention, in particular, for patients with a high atherosclerotic risk factor profile.


  • 1 Lüscher T F. Platelet-vessel wall interaction: role of nitric oxide, prostaglandins and endothelins.  Baillieres Clin Haematol . 1993;  6 609-627
  • 2 Andrews R K, Lopez J A, Berndt M C. Molecular mechanisms of platelet adhesion and activation.  Int J Biochem Cell Biol . 1997;  29 91-105
  • 3 Gawaz M. Blood Platelets-Physiology, Pathophysiology, Membrane Receptors, Antiplatelet Principles, and Therapy for Atherothrombotic Diseases. New York: Thieme 2001
  • 4 Back L D, Radbill J R, Crawford D W. Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man.  J Biomech . 1977;  10 339-353
  • 5 Barnes M J, Knight C G, Farndale R W. The collagen-platelet interaction.  Curr Opin Hematol . 1998;  5 314-320
  • 6 Caen J P, Rosa J P. Platelet-vessel wall interaction: from the bedside to molecules.  Thromb Haemost . 1995;  74 18-24
  • 7 de Groot G P, Sixma J J. Role of von Willebrand factor in the vessel wall.  Semin Thromb Hemost . 1987;  13 416-424
  • 8 De Meyer R G, Hoylaerts M F, Kockx M M, Yamamoto H, Herman A G, Bult H. Intimal deposition of functional von Willebrand factor in atherogenesis.  Arterioscler Thromb Vasc Biol . 1999;  19 2524-2534
  • 9 Ruggeri Z M. New insights into the mechanisms of platelet adhesion and aggregation.  Semin Hematol . 1994;  31 229-239
  • 10 Ruggeri Z M. von Willebrand factor.  J Clin Invest . 1997;  99 559-564
  • 11 van Zanten H G, de Graaf S, Slootweg P J, Heijnen H F, Connolly T M, de Groot G P, Sixma J J. Increased platelet deposition on atherosclerotic coronary arteries.  J Clin Invest . 1994;  93 615-632
  • 12 Baumgartner H R. Platelet interaction with collagen fibrils in flowing blood. I. Reaction of human platelets with alpha chymotrypsin-digested subendothelium.  Thromb Haemost . 1977;  37 1-16
  • 13 Baumgartner H R, Muggli R, Tschopp T B, Turitto V T. Platelet adhesion, release and aggregation in flowing blood: effects of surface properties and platelet function.  Thromb Haemost . 1976;  35 124-138
  • 14 Rekhter M D. Collagen synthesis in atherosclerosis: too much and not enough.  Cardiovasc Res . 1999;  41 376-384
  • 15 Rekhter M D, Zhang K, Narayanan A S, Phan S, Schork M A, Gordon D. Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions.  Am J Pathol . 1993;  143 1634-1648
  • 16 Opsahl W P, DeLuca D J, Ehrhart L A. Accelerated rates of collagen synthesis in atherosclerotic arteries quantified in vivo.  Arteriosclerosis . 1987;  7 470-476
  • 17 Andre P, Denis C V, Ware J, Saffaripour S, Hynes R O, Ruggeri Z M, Wagner D D. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins.  Blood . 2000;  96 3322-3328
  • 18 Goto S, Ikeda Y, Saldivar E, Ruggeri Z M. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions.  J Clin Invest . 1998;  101 479-486
  • 19 Ruggeri Z M. Mechanisms initiating platelet thrombus formation.  Thromb Haemost . 1997;  78 611-616
  • 20 Savage B, Almus-Jacobs F, Ruggeri Z M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow.  Cell . 1998;  94 657-666
  • 21 Savage B, Saldivar E, Ruggeri Z M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor.  Cell . 1996;  84 289-297
  • 22 Houdijk W P, Schiphorst M E, Sixma J J. Identification of functional domains on von Willebrand factor by binding of tryptic fragments to collagen and to platelets in the presence of ristocetin.  Blood . 1986;  67 1498-1503
  • 23 Gibbins J M, Okuma M, Farndale R, Barnes M, Watson S P. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma- chain.  FEBS Lett . 1997;  413 255-259
  • 24 Nieswandt B, Bergmeier W, Schulte V, Rackebrandt K, Gessner J E, Zirngibl H. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcR gamma chain.  J Biol Chem . 2000;  275 23998-24002
  • 25 Nieswandt B, Schulte V, Bergmeier W. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice.  J Exp Med . 2001;  193 459-469
  • 26 Nieswandt B, Brakebusch C, Bergmeier W. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen.  EMBO J . 2001;  20 2120-2130
  • 27 Clemetson J M, Polgar J, Magnenat E, Wells T N, Clemetson K J. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors.  J Biol Chem . 1999;  274 29019-29024
  • 28 Jandrot-Perrus M, Busfield S, Lagrue A H. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily.  Blood . 2000;  96 1798-1807
  • 29 Watson S P, Asazuma N, Atkinson B. The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen.  Thromb Haemost . 2001;  86 276-288
  • 30 Chen H, Locke D, Liu Y, Liu C, Kahn M L. The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion.  J Biol Chem . 2002;  277 3011-3019
  • 31 Massberg S, Gawaz M, Grüner S. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo.  J Exp Med . 2003;  197 41-49
  • 32 Du X, Magnenat E, Wells T N, Clemetson K J. Alboluxin, a snake C-type lectin from Trimeresurus albolabris venom is a potent platelet agonist acting via GPIb and GPVI.  Thromb Haemost . 2002;  87 692-698
  • 33 Dormann D, Clemetson J M, Navdaev A, Kehrel B E, Clemetson K J. Alboaggregin A activates platelets by a mechanism involving glycoprotein VI as well as glycoprotein Ib.  Blood . 2001;  97 929-936
  • 34 Kasirer-Friede A, Ware J, Leng L, Marchese P, Ruggeri Z M, Shattil S J. Lateral clustering of platelet GP Ib-IX complexes leads to up-regulation of the adhesive function of integrin alphaIIbbeta3.  J Biol Chem . 2002;  277 11949-11956
  • 35 Wilcox J N, Smith K M, Schwartz S M, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque.  Proc Natl Acad Sci USA . 1989;  86 2839-2843
  • 36 Toschi V, Gallo R, Lettino M. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques.  Circulation . 1997;  95 594-599
  • 37 Mach F, Schönbeck U, Bonnefoy J Y, Pober J S, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor.  Circulation . 1997;  96 396-399
  • 38 Moons A H, Levi M, Peters R J. Tissue factor and coronary artery disease.  Cardiovasc Res . 2002;  53 313-325
  • 39 Phillips D R, Charo I F, Parise L V, Fitzgerald L S. The platelet membrane glycoprotein IIb-IIIa complex.  Blood . 1988;  71 831-843
  • 40 Phillips D R, Charo I F, Scarborough R M. GPIIb-IIIa: the responsive integrin.  Cell . 1991;  65 359-362
  • 41 Phillips D R, Nannizzi-Alaimo L, Prasad K S. Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling.  Thromb Haemost . 2001;  86 246-258
  • 42 Endenburg S C, Hantgan R R, Sixma J J, de Groot G P, Zwaginga J J. Platelet adhesion to fibrin(ogen).  Blood Coagul Fibrinolysis . 1993;  4 139-142
  • 43 Gawaz M P, Loftus J C, Bajt M L, Frojmovic M M, Plow E F, Ginsberg M H. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions.  J Clin Invest . 1991;  88 1128-1134
  • 44 Moroi M, Jung S M. Integrin-mediated platelet adhesion.  Front Biosci . 1998;  3 D719-D728
  • 45 Fitzgerald D J, Roy L, Catella F, FitzGerald G A. Platelet activation in unstable coronary disease.  N Engl J Med . 1986;  315 983-989
  • 46 Willerson J T, Golino P, Eidt J, Campbell W B, Buja L M. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications.  Circulation . 1989;  80 198-205
  • 47 Gawaz M, Neumann F J, Dickfeld T, Reininger A, Adelsberger H, Gebhardt A, Schömig A. Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction.  Circulation . 1997;  96 1809-1818
  • 48 Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, Messmer K. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin.  Blood . 1998;  92 507-515
  • 49 Massberg S, Enders G, Matos F C. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo.  Blood . 1999;  94 3829-3838
  • 50 Massberg S, Messmer K. The nature of ischemia/reperfusion injury.  Transplant Proc . 1998;  30 4217-4223
  • 51 Biberthaler P, Luchting B, Massberg S. The influence of organ temperature on hepatic ischemia-reperfusion injury: a systematic analysis.  Transplantation . 2001;  72 1486-1490
  • 52 Neumann F J, Blasini R, Schmitt C. Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery stents in acute myocardial infarction.  Circulation . 1998;  98 2695-2701
  • 53 Eidt J F, Ashton J, Golino P, McNatt J, Buja L M, Willerson J T. Treadmill exercise promotes cyclic alterations in coronary blood flow in dogs with coronary artery stenoses and endothelial injury.  J Clin Invest . 1989;  84 517-527
  • 54 Eidt J F, Allison P, Noble S. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury.  J Clin Invest . 1989;  84 18-27
  • 55 Hirsh P D, Hillis L D, Campbell W B, Firth B G, Willerson J T. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease.  N Engl J Med . 1981;  304 685-691
  • 56 Yao S K, McNatt J, Cui K, Anderson H V, Maffrand J P, Buja L M, Willerson J T. Combined ADP and thromboxane A2 antagonism prevents cyclic flow variations in stenosed and endothelium-injured arteries in nonhuman primates.  Circulation . 1993;  88 2888-2893
  • 57 Ito H, Maruyama A, Iwakura K. Clinical implications of the `no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction.  Circulation . 1996;  93 223-228
  • 58 Ravkilde J, Nissen H, Mickley H, Andersen P E, Thayssen P, Horder M. Cardiac troponin T and CK-MB mass release after visually successful percutaneous transluminal coronary angioplasty in stable angina pectoris.  Am Heart J . 1994;  127 13-20
  • 59 Topol E J, Yadav J S. Recognition of the importance of embolization in atherosclerotic vascular disease.  Circulation . 2000;  101 570-580
  • 60 Skyschally A, Schulz R, Erbel R, Heusch G. Reduced coronary and inotropic reserves with coronary microembolization.  Am J Physiol Heart Circ Physiol . 2002;  282 H611-H614
  • 61 Libby P, Ridker P M, Maseri A. Inflammation and atherosclerosis.  Circulation . 2002;  105 1135-1143
  • 62 Ridker P M, Cushman M, Stampfer M J, Tracy R P, Hennekens C H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.  N Engl J Med . 1997;  336 973-979
  • 63 Lindemann S, Tolley N D, Dixon D A, McIntyre T M, Prescott S M, Zimmerman G A, Weyrich A S. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis.  J Cell Biol . 2001;  154 485-490
  • 64 McEver R. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation.  Thromb Haemost . 2001;  86 746-756
  • 65 Henn V, Slupsky J R, Grafe M, Anagnostopoulos I, Forster R, Müller-Berghaus G, Kroczek R A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.  Nature . 1998;  391 591-594
  • 66 Gawaz M, Neumann F J, Dickfeld T. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells.  Circulation . 1998;  98 1164-1171
  • 67 Gawaz M, Brand K, Dickfeld T. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis.  Atherosclerosis . 2000;  148 75-85
  • 68 Gu L, Okada Y, Clinton S K, Gerard C, Sukhova G K, Libby P, Rollins B J. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice.  Mol Cell . 1998;  2 275-281
  • 69 Fateh-Moghadam S, Bocksch W, Ruf A. Changes in surface expression of platelet membrane glycoproteins and progression of heart transplant vasculopathy.  Circulation . 2000;  102 890-897
  • 70 Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad.  Cell Mol Life Sci . 2001;  58 4-43
  • 71 Schönbeck U, Libby P. CD40 signaling and plaque instability.  Circ Res . 2001;  89 1092-1103
  • 72 Lutgens E, Gorelik L, Daemen M J, de Muinck D E, Grewal I S, Koteliansky V E, Flavell R A. Requirement for CD154 in the progression of atherosclerosis.  Natl Med . 1999;  5 1313-1316
  • 73 Mach F, Schönbeck U, Sukhova G K, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling.  Nature . 1998;  394 200-203
  • 74 Massberg S, Brand K, Grüner S. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.  J Exp Med . 2002;  196 887-896
  • 75 May A E, Kälsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (alpha(IIb) beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells.  Circulation . 2002;  106 2111-2117
  • 76 Ruberg F L, Leopold J A, Loscalzo J. Atherothrombosis: plaque instability and thrombogenesis.  Prog Cardiovasc Dis . 2002;  44 381-394
  • 77 Massberg S, Sausbier M, Klatt P. Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I.  J Exp Med . 1999;  189 1255-1264
  • 78 Davies M J. Going from immutable to mutable atherosclerotic plaques.  Am J Cardiol . 2001;  88 2F-9F