Handchir Mikrochir Plast Chir 2003; 35(2): 72-82
DOI: 10.1055/s-2003-40767
Übersichtsartikel

Georg Thieme Verlag Stuttgart · New York

Faktoren, die die Regeneration peripherer Nerven beeinflussen[1]

Factors Influencing Nerve RegenerationH. Fansa 1 , G. Keilhoff 2
  • 1Klinik für Plastische, Wiederherstellungs- und Handchirurgie (Direktor: o. Univ.-Prof. Dr. W. Schneider), Medizinische Fakultät der Otto-von-Guericke-Universität, Magdeburg
  • 2Institut für Medizinische Neurobiologie (Direktor: Prof. Dr. G. Wolf), Medizinische Fakultät der Otto-von-Guericke-Universität, Magdeburg
Further Information

Publication History

Eingang des Manuskriptes: 10. Oktober 2002

Angenommen: 7. Februar 2003

Publication Date:
22 July 2003 (online)

Zusammenfassung

Ziel dieser Arbeit ist es, den derzeitigen Wissensstand über die wichtigsten zellulären und molekularen Faktoren darzulegen, die Einfluss auf die Regeneration peripherer Nerven haben. Die erste Voraussetzung für die Regeneration eines Axons nach einer Läsion ist das Überleben der Nervenzelle. Dies ist von der Art der Nervenzelle, ihrem Alter, der Art der Verletzung und der Entfernung der Verletzung vom Zellsoma abhängig. Spinale Motoneurone sind weniger anfällig für den verletzungsbedingten Zelltod als kraniale Motoneurone und sensible Nervenzellen. Bei der überlebenden Nervenzelle laufen verschiedene Veränderungen ab, die eine Wandlung vom ruhenden zum auswachsenden Neuron bezeichnen. Die verletzten Motoneurone produzieren verschiedene neurotrophische Faktoren und die dazugehörigen Rezeptoren, die sowohl auf das Neuron selbst wie auch auf die nicht neuronalen Zellen, in erster Linie die Schwannschen Zellen, wirken. Im distalen Nervenstumpf sind die Vorgänge zu Beginn degenerativ und beinhalten den Abbau der Axone und die Phagozytose des Myelins, die so genannte Wallersche Degeneration. In den ersten zwei Tagen der Wallerschen Degeneration ist die Einwanderung von Makrophagen minimal, so dass die Schwannschen Zellen den myelinalen Debris phagozytieren. Danach übernehmen dies hämatogene Makrophagen. Nach zwei Wochen ist die Wallersche Degeneration dann beendet. Mit dem Verlust des axonalen Kontaktes beginnt die myelinisierende Schwannsche Zelle innerhalb von zwei Tagen die Umstellung von der myelinisierenden zur regenerationsfördernden Zelle, d. h. es kommt zur Proliferation der Zellen, zur Ausbildung einer Zellsäule (Büngnersche Bänder) als Leitschiene für die regenerierenden Nervenfasern und zu einer verminderten Produktion der Substanzen, die zur Myelinisierung und Aufrechterhaltung des Myelins notwendig sind, während Wachstumsfaktoren, die bei intakten Nerven nur in geringem Maß produziert werden, vermehrt hergestellt und sezerniert werden. Die Expression vieler Moleküle, die entweder direkt oder über nicht-neuronale Zellen, wie Schwannsche Zellen, Makrophagen und Fibroblasten, Einfluss auf die axonale Regeneration haben, wird reguliert. Diese Substanzen können in neurotrophische Faktoren und Zelladhäsionsmoleküle unterteilt werden. Der therapeutische Einsatz von Pharmaka oder Wachstumsfaktoren in der Rekonstruktion peripherer Nerven befindet sich erst in den Anfängen und bedarf noch experimenteller und klinischer Versuche. In tierexperimentellen Studien zeigten eine Vielzahl von Wachstumsfaktoren eine regenerationsfördernde Potenz. Aber auch das Immunsuppressivum FK 506 verbesserte die Regeneration sowohl bei Kompressionsneuropathien als auch nach einer kompletten Nervendurchtrennung.

Abstract

This paper describes the most important cellular and molecular factors that influence nerve regeneration. The first prerequisite for axonal regeneration is survival of the neuron. This depends on neuron type, age, and the degree and proximity of the injury to the cell body. Spinal motoneurons are less susceptible to injury-induced death than cranial motoneurons and sensory neurons. The surviving neurons undergo changes characteristic of a switch from a transmitting mode to a growing mode. They produce various neurotrophic factors and their receptors influencing the neuron and the non-neuronal cells such as Schwann cells. The distal nerve stump undergoes degenerative processes including removal of axons and phagocytosis of myelin debris, the so-called Wallerian degeneration. Until the second day phagocytosis is done by Schwann cells, hematogenous macrophages invade the distal stump at the second day and phagocyte the whole debris within two weeks. Devoid of axonal contact, the myelinating Schwann cells switch their function from myelination to growth support for the regenerating axons, including cell proliferation, downregulation of myelin components and upregulation of neurotrophic factors. Additionally, the Schwann cells form the so-called Bands of Büngner, cell columns serving as pathway for the growing axon. Trophic factors, cell adhesion molecules and extracellular matrix influence the neuron, the growing axon and the endorgan as well as the non-neuronal cells such as Schwann cells, fibroblasts and macrophages. Application of drugs or trophic substances to enhance nerve regeneration after trauma and reconstruction is in the very beginning, and thus requires further experimental and clinical studies. Experimentally, FK 506 was found to support axonal regeneration after crush lesions and nerve grafting. Growth factors are currently administered clinically in other neurological diseases.

1 Herrn o. Univ.-Prof. Dr. Wolfgang Schneider zum 60. Geburtstag gewidmet

Literatur

  • 1 Aebischer P, Schluep M, Deglon N, Joseph J M, Hirt L, Heyd B, Goddard M, Hammang J P, Zurn A D, Kato A C, Regli F, Baetge E E. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients.  Nat Med. 1996;  2 696-699
  • 2 Apfel S C. Nerve growth factor for treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold?.  Int Rev Neurobiol. 2002;  50 393-413
  • 3 Apfel S C. Neurotrophic factors in peripheral neuropathies: Therapeutic implications.  Brain Pathol. 1999;  9 393-413
  • 4 Aszmann O C, Korak K J, Kropf N, Fine E, Aebischer P, Frey M. Simultaneous GDNF and BDNF application leads to increased motoneuron survival and improved functional outcome in an experimental model for obstetric brachial plexus lesions.  Plast Reconstr Surg. 2002;  110 1066-1072
  • 5 Barde Y A. The nerve growth factor family.  Prog Growth Factor Res. 1990;  2 237-248
  • 6 Barras F M, Pasche P, Bouche N, Aebischer P, Zurn A D. Glial cell line-derived neurotrophic factor channels promotes facial nerve regeneration in the rat.  J Neurosci Res. 2002;  70 746-755
  • 7 Bernstein-Goral H, Diener P S, Bregman B S. Regenerating and sprouting axons differ in their requirements for growth after injury.  Exp Neurol. 1997;  148 51-72
  • 8 Bormann P, Zumsteg V M, Roth L W, Reinhard E. Target contact regulates GAP-43 and α-tubulin mRNA levels in regenerating retinal ganglion cells.  J Neurosci Res. 1998;  52 405-419
  • 9 Bottner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions.  J Neurochem. 2000;  75 2227-2240
  • 10 Boyd J G, Gordon T. A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor.  Eur J Neurosci. 2002;  15 613-626
  • 11 Brück W. The role of macrophages in Wallerian degeneration.  Brain Pathol. 1997;  7 741-752
  • 12 Bruses J L, Chauvet N, Rubio M E, Rutishauser U. Polysialic acid and the formation of oculomotor synapses on chick ciliary neurons.  J Comp Neurol. 2002;  446 244-256
  • 13 Büngner v O. Ueber die Degenerations- und Regenerationsvorgänge am Nerven nach Verletzungen.  Beitr Path Anat. 1891;  10 321-393
  • 14 Butte M J. Neurotrophic factor structure reveal clues to evolution, binding, specificity, and receptor activation.  Cell Mol Life Sci. 2001;  58 1003-1013
  • 15 Campana W M, Darin S J, O'Brien J S. Phosphatidylinositol 3-kinase and AKT protein kinase mediate IGF-I- and prosatide-induced survival of Schwann cells.  J Neurosci Res. 1999;  57 332-341
  • 16 Caplan J, Tiangco D A, Terzis J K. Effects of IGF-II in a new end-to-side model.  J Reconstr Microsurg. 1999;  15 351-358
  • 17 Chan J M, Stampfer M J, Giovannucci E, Gann P H, Ma J, Wilkinson P, Hennekens C H, Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study.  Science. 1998;  279 563-566
  • 18 Claus P, Grothe C. Molecular cloning and developmental expression of rat fibroblast growth factor receptor 3.  Histochem Cell Biol. 2001;  115 147-155
  • 19 Conlon I J, Dunn G A, Mudge A W, Raff M C. Extracellular control of cell size.  Nature Cell Biol. 2001;  3 918-921
  • 20 Creange A, Barlovatz-Meimon G, Gherardi R K. Cytokines and peripheral nerve disorders.  Eur Cytokine Netw. 1997;  8 145-151
  • 21 Dechant G, Barde Y A. The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system.  Nature Neurosci. 2002;  5 1131-1136
  • 22 DeChiara T M, Vejsada R, Poueymirou W T, Acheson A, Suri C, Conover J C, Friedman B, McClain J, Pan L, Stahl N, Ip N Y, Kato A, Yancopulos G D. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth.  Cell. 1995;  83 313-322
  • 23 Dezawa M. The interaction and adhesive mechanisms between axon and Schwann cell during central and peripheral nerve regeneration.  Kaibogaku Zasshi. 2000;  75 255-265
  • 24 Dezawa M, Adachi-Usami E. Role of Schwann cells in retinal ganglion cell axon regeneration.  Prog Retin Eye Res. 2000;  19 171-204
  • 25 Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, Jessen K R. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors.  Neuron. 1995;  15 585-596
  • 26 Dubey N, Letourneau P C, Tranquillo R T. Guide neurote elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration.  Exp Neurol. 1999;  158 338-350
  • 27 Dyck P J, Peroutka S, Rask C, Burton E, Baker M K, Lehman K A, Gillen D A, Hokanson J L, O'Brien P C. Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans.  Neurology. 1997;  48 501-505
  • 28 Fansa H, Keilhoff G, Förster G, Seidel B, Wolf G, Schneider W. Acellular muscle with Schwann-cell implantation: An alternative biologic nerve conduit.  J Reconstr Microsurg. 1999;  15 531-537
  • 29 Fansa H, Keilhoff G, Horn T, Altmann S, Wolf G, Schneider W. Stimulation des Wachstums Schwannscher Zellen und der axonalen Regeneration peripherer Nerven durch das Immunsuppressivum FK 506.  Handchir Mikrochir Plast Chir. 1999;  31 323-329
  • 30 Fansa H, Keilhoff G, Plogmeier K, Frerichs O, Wolf G, Schneider W. Successful implantation of Schwann cells in acellular muscles.  J Reconstr Microsurg. 1999;  15 61-65
  • 31 Fansa H, Schneider W, Wolf G, Keilhoff G. Insulin-like growth factor I (IGF-I) improves axonal regeneration in nerve autografts but not in tissue engineered grafts derived from muscle basallamina and cultured Schwann cells.  Muscle Nerve. 2002;  26 87-93
  • 32 Feldman E L, Sullivan K A, Kim B, Russell J W. Insulin-like growth factors regulate neuronal differentiation and survival.  Neurobiol Dis. 1997;  4 201-214
  • 33 Fortes W M, Noah E M, Liuzzi F J, Terzis J K. End-to-side neurorrhaphy: Evaluation of axonal response and upregulation of IGF-I and IGF-II in a non-injury model.  J Reconstr Microsurg. 1999;  15 449-457
  • 34 Fu S Y, Gordon T. The cellular and molecular basis of peripheral nerve regeneration.  Mol Neurobiol. 1997;  14 67-116
  • 35 Georgiou J, Charlton M P. Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein.  Glia. 1999;  27 101-109
  • 36 Gillen C, Jander S, Stoll G. Sequential expression of mRNA for proinflammatory cytokines and interleukin-10 in the rat peripheral nervous system: Comparison between immune-mediated demyelination and Wallerian degeneration.  J Neurosci Res. 1998;  51 489-496
  • 37 Gold B G, Gordon H S, Wang M S. Efficacy of delayed or discontinuous FK 506 administrations on nerve regeneration in the rat sciatic nerve crush model: Lack of evidence for a conditioning lesion-like effect.  Neurosci Lett. 1999;  267 33-36
  • 38 Gold B G, Zeleny-Pooley M, Chaturvedi P, Wang M S. Oral administration of a nonimmunosuppressant FKBP-12 ligand speeds nerve regeneration.  Neuro Report. 1998;  9 553-558
  • 39 Goldberg J L, Barres B A. The relationship between neuronal survival and regeneration.  Annu Rev Neurosci. 2000;  23 579-612
  • 40 Griffin J W, George R, Ho T. Macrophage systems in peripheral nerves. A review.  J Neuropathol Exp Neurol. 1993;  52 553-560
  • 41 Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz C, Cattini O P, Otten U. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18 kD fibroblast growth factor-2.  Brain Res. 2000;  885 172-181
  • 42 Grothe C, Meisinger C, Claus P. Invivo expression and localization of fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia.  J Comp Neurol. 2001;  434 342-357
  • 43 Grothe C, Nikkhah G. The role of basic fibroblast growth factor in peripheral nerve regeneration.  Anat Embryol. 2001;  204 171-177
  • 44 Gulati A K. Immune response and neurotrophic factor interactions in peripheral nerve transplants.  Acta Haematol. 1998;  99 171-174
  • 45 Hall M E. Changes in synthesis of specific proteins in axotomized dorsal root ganglia.  Exp Neurol. 1982;  76 83-93
  • 46 Harper S, Bilsland J, Young L, Bristow L, Boyce S, Mason G, Rigby M, Hewson L, Smith D, O'Donnell R, O'Connor D, Hill R G, Evans D, Swain C, Williams B, Hefti F. Analysis of the neurotrophic effects of GPI-1046 on neuron survival and regeneration in culture and in vivo.  Neuroscience. 1999;  88 257-267
  • 47 Heerssen H M, Segal R A. Location, location, location: a spatial view of neurotrophin signal transduction.  TINS. 2002;  25 160-165
  • 48 Hempstead B. The many faces of p75NTR.  Curr Opinion Neurobiol. 2002;  12 260-267
  • 49 Hinks G L, Franklin R J. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats.  Mol Cell Neurosci. 2000;  16 542-556
  • 50 Hoke A, Ho T, Crawford T O, LeBel C, Hilt D, Griffin J W. Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes myelination in unmyelinated nerve.  J Neurosci. 2003;  23 561-567
  • 51 Holly S P, Larson M K, Parise L V. Multiple roles of integrins in cell motility.  Exp Cell Res. 2000;  261 69-74
  • 52 Homma S, Yaginuma H, Vinsant S, Seino M, Kawata M, Gould T, Shimada T, Kobayashi N, Oppenheimer R W. Differential expression of the GDNF family receptor RET at GFRalpha1, 2 and 4 in subsets of motoneurons: a relationship between motoneuron birthdate and receptor expression.  J Comp Neurol. 2003;  456 245-259
  • 53 Honma M, Namikawa K, Mansur K, Iwata T, Mori N, Iizuka H, Kiyamy H. Developmental alteration of nerve injury induced glial cell line-derived neurotrophic factor (GDNF) receptor expression is crucial for determination of injured motoneuron fate.  J Neurochem. 2002;  82 961-975
  • 54 Ide C. Peripheral nerve regeneration.  Neurosci Res. 1996;  25 101-121
  • 55 Keilhoff G, Fansa H, Schneider W, Wolf G. In vivo predegeneration of peripheral nerves: An effective technique to obtain activated Schwann cells for nerve conduits.  J Neurosci Methods. 1999;  89 17-24
  • 56 Kihara M, Kamijo M, Nakasaka Y, Mitsui Y, Takahashi M, Schmelzer J D. A small dose of the immunosuppressive agent FK506 (tacrolimus) protects peripheral nerve from ischemic fiber degeneration.  Muscle Nerve. 2001;  24 1601-1606
  • 57 Kimpinski K, Mearow K. Neurite growth promotion by nerve growth factor and insulin-like growth factor-1 in cultured adult sensory neurons: role of phosphoinositide 3-kinase and mitogen activated protein kinase.  J Neurosci Res. 2001;  63 486-499
  • 58 Kirstein M, Farinas I. Sensing life: regulation of sensory neuron survival by neurotrophins.  Cell Mol Life Sci. 2002;  59 1787-1802
  • 59 Kobayashi N R, Fan D P, Giehl K M, Bedard A M, Wiegand S J, Tetzlaff W. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Tα1-tubulin mRNA expression, and promote axonal regeneration.  J Neurosci. 1997;  17 9583-9595
  • 60 Kreutzberg G W. Principles of neuronal regeneration.  Acta Neurochir Suppl. 1996;  66 103-106
  • 61 Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K. TGF-beta and the regulation of neuron survival and death.  J Physiol Paris. 2002;  96 25-30
  • 62 Kwon B K, Liu J, Messerer C, Kobayashi N R, McGraw J, Oschipok K, Tetzlaff W. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury.  Proc Natl Acad Sci USA. 2002;  99 3246-3251
  • 63 Lassner F, Schaller E, Steinhoff G, Wonigeit K, Walter G F, Berger A. Cellular mechanisms of rejection and regeneration in peripheral nerve allografts.  Transplantation. 1989;  48 386-392
  • 64 Laura M, Gregson N A, Curmi Y, Hughes R A. Efficacy of leukemia inhibitory factor in experimental autoimmune neuritis.  J Neuroimmunol. 2002;  133 56-59
  • 65 Leong J, Hayes A, Austin L, Morrison W. Muscle protection following motor nerve repair in combination with leukemia inhibitory factor.  J Hand Surg [Am]. 1999;  24 37-45
  • 66 Lewin G R, Rueff A M, Mendell L M. Peripheral and central mechanisms of NGF-induced hyperalgesia.  Eur J Neurosci. 1994;  6 1903-1912
  • 67 Lilje O, Armati P J. The distribution and abundance of MHC and ICAM-I on Schwann cells in vitro.  J Neuroimmunol. 1997;  77 75-84
  • 68 Liu R Y, Schmid R S, Snider W D, Mannes F. NGF enhances sensory axon growth induced by laminin but not by the L1 cell adhesion molecule.  Molec Cell Neurosci. 2002;  20 2-12
  • 69 Ma Q P, Tian L, Woolf C J. Resection of sciatic nerve re-triggers central sprouting of A-fibre primary afferents in the rat.  Neurosci Lett. 2000;  288 215-218
  • 70 Madsen J R, MacDonald P, Irwin N, Goldberg D E, Yao G L, Meiri K F, Rimm I J, Stieg P E, Benowitz L I. Tacrolimus (FK 506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats.  Exp Neurol. 1998;  154 673-683
  • 71 Martin L J, Kaiser A, Price A C. Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative stress and is apoptosis.  J Neurobiol. 1999;  40 185-201
  • 72 Mason J L, Suzuki K, Chaplin D D, Matsushima G K. Interleukin-1 beta promotes repair of the CNS.  J Neurosci. 2001;  21 7046-7052
  • 73 McGowan K A, Marinkovich M P. Laminins in human disease.  Microsc Res Tech. 2000;  51 262-279
  • 74 McGraw T S, Mickle J P, Shaw G, Streit W J. Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons.  J Neurosci. 2002;  22 4955-4963
  • 75 Mitchell J D, Wokke J H, Borasio G D. Recombinant human insulin-like growth factor I (rhIGF-I) for amyotrophic lateral sclerosis/motor neuron disease.  Cochrane Database Syst Rev. 2002;  3 CD002064
  • 76 Munson J B, Shelton D L, McMahon S B. Adult mammalian sensory and motor neurons: Roles of endogenous neurotrophins and rescue by exogenous neurotrophins after axotomy.  J Neurosci. 1997;  17 470-476
  • 77 Near S L, Whalen L R, Miller J A, Ishii D N. Insulin-like growth factor II stimulates motor nerve regeneration.  Proc Natl Acad Sci USA. 1992;  89 11716-11720
  • 78 Neet K E, Campenot R B. Receptor binding, internalization, and retrograd transport of neurotrophic factors.  Cell Molec Life Sci. 2001;  58 1021-1035
  • 79 Oka N, Kawasaki T, Matsui M, Tachibana H, Sugita M, Akiguchi I. Neuregulin is associated with nerve regeneration in axonal neuropathies.  Neuroreport. 2000;  11 3673-3676
  • 80 Olson L. Clearing a path for nerve growth.  Nature. 2002;  416 589-590
  • 81 Penn R D, Kroin J S, York M M, Cedarbaum J M. Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial).  Neurosurgery. 1997;  40 94-99
  • 82 Pierson C R, Zhang W, Murakawa Y, Sima A A. Early gene responses to trophic factors in nerve regeneration differ in experimental type 1 and type 2 diabetic polyneuropathies.  J Neuropathol Exp Neurol. 2002;  61 857-871
  • 83 Plunet W, Kwon B K, Tetzlaff W. Promoting axonal regeneration in the central nervous system by enhancing the cell body response in axotomy.  J Neurosci Res. 2002;  68 1-6
  • 84 Probstmeier R, Nellen J, Gloor S, Wernig A, Pesheva P. Tenascin-R is expressed by Schwann cells in the peripheral nervous system.  J Neurosci Res. 2001;  64 70-78
  • 85 Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2.  J Neurosci. 1994;  14 3231-3245
  • 86 Reichert F, Slobodov U, Makranz C, Rotshenker S. Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin phagocytosis.  Neurobiol Diseases. 2001;  8 504-512
  • 87 Ren K, Thomas D A, Dubner R. Nerve growth factor alleviates a painful peripheral neuropathy in rats.  Brain Res. 1995;  699 286-292
  • 88 Rind H B, von Bartheld C S. Anterograd axonal transport of internalized GDNF in sensory and motor neurons.  NeuroReport. 2002;  13 659-664
  • 89 Rupniak N MJ, Laird J MA, Boyce S, Hill R G. Neurotrophic factors in peripheral nerve injury and regeneration. Hefti F Handbook of Experimental Pharmacology. Neurotrophic Factors. Vol. 134. Berlin; Springer Verlag 1999: 147-174
  • 90 Saarma M. GDNF - a stranger in the TGF-beta super family?.  Eur J Biochem. 2000;  267 6968-6971
  • 91 Santos X, Rodrigo J, Hontanilla B, Bilbao G. Evaluation of peripheral nerve regeneration by nerve growth factor locally administered with a novel system.  J Neurosci Methods. 1998;  85 119-127
  • 92 Schäfer M, Fruttiger M, Montag D, Schachner M, Martini R. Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57 BL/Wlds mice.  Neuron. 1996;  16 1107-1113
  • 93 Schmid R S, Mannes P F. Cell recognition molecules and disorders of neurodevelopment. Kalverboer AF, Gramsberger A Handbook of Brain and Behaviour in Human Development. Great Britain; Kluwer Academic 2001
  • 94 Schröder J M. Pathology of Peripheral Nerves. An Atlas of Structural and Molecular Pathological Changes. Berlin, Heidelberg, New York; Springer Verlag 2001
  • 95 Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1 alpha, and interleukin-1 beta.  J Neurosci. 2002;  22 3052-3060
  • 96 Shi T J, Tandrup T, Bergman E, Xu Z Q, Ulfhake B, Hökfelt T. Effect of peripheral nerve injury in dorsal root ganglion neurons in the C57 BL/6J mouse: marked changes both in cell numbers and neuropeptide expression.  Neuroscience. 2001;  105 249-263
  • 97 Shibuya Y, Mizoguchi A, Takeichi M, Shimada K, Ide C. Localization of N-cadherin in the normal and regenerating nerve fibers of the chicken peripheral nervous system.  Neuroscience. 1995;  67 253-261
  • 98 Siebert H, Brück W. The role of cytokines and adhesion molecules in axon degeneration after peripheral nerve axotomy: a study in different knock out mice.  Brain Res. 2003;  960 152-156
  • 99 Silani V, Braga M, Cardin V, Scarlato G. The pathogenesis of ALS: implication for treatment strategies.  Neurol Neuochir Pol. 2001;  35 25-39
  • 100 Soares S, von Boxberg Y, Lombard M C, Ravaille-Veron M, Fischer N, Eyer J, Nothias F. Phosphorylated MAP1 B is induced in central sprouting of primary afferents in response to peripheral injury but not in response to rhizotomy.  Eur J Neurosci. 2002;  16 593-606
  • 101 Stankoff B, Aigot M S, Noel F, Wattilliaux A, Zale B, Lubetzki C. Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules.  J Neurosci. 2002;  22 9221-9227
  • 102 Stoll G, Müller H W. Nerve injury, axonal degeneration and neural regeneration: Basic insights.  Brain Pathol. 1999;  9 313-325
  • 103 Sulaiman O A, Gordon T. Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo.  Glia. 2002;  37 206-218
  • 104 Sunderland S. Nerve Injuries and their Repair. Edinburgh; Churchill Livingstone 1991
  • 105 Sunderland S. The anatomy and physiology of nerve injury.  Muscle Nerve. 1990;  13 771-784
  • 106 Syroid D E, Zorick T S, Arbet-Engels C, Kilpatrick T J, Eckhart W, Lemke G. A role for insulin-like growth factor I in the regulation of Schwann cell survival.  J Neurosci. 1999;  19 2059-2068
  • 107 Takahashi M. The GDNF/RET signaling pathway and human diseases.  Cytokines and Growth Factor Rev. 2001;  12 361-373
  • 108 Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T. A null mutation in the human CNTF gene is not causally related to neurological diseases.  Nat Genet. 1994;  7 79-84
  • 109 Tang S, Qiu J, Nikulina E, Filbin M T. Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration.  Mol Cell Neurosci. 2001;  18 259-269
  • 110 Terenghi G, Calder J S, Birch R, Hall S M. A morphological study of Schwann cells and axonal regeneration in chronically transected human peripheral nerves.  J Hand Surg [Br]. 1998;  23 583-587
  • 111 Terenghi G. Peripheral nerve injury and regeneration.  Histol Histopathol. 1995;  10 709-718
  • 112 Terzis J K, Sun D D, Thanos P K. Historical basic science review: Past, present, and future of nerve repair.  J Reconstr Microsurg. 1997;  13 215-225
  • 113 Thoenen H, Sendtner M. Neurotrophins: from enthusiastic expections through sobering experiences to rational therapeutic approaches.  Nature Neurosci Suppl. 2002;  5 1046-1050
  • 114 Tiangco D A, Papakonstantinou K C, Mullinax K A, Terzis J K. IGF-I and end-to-side nerve repair: a dose-response study.  J Reconstruc Microsurg. 2001;  17 247-256
  • 115 Toba T, Nakamura T, Lynn A K, Matsumoto K, Fukuda S, Yoshitani M, Hori Y, Shimizu Y. Evaluation of peripheral nerve regeneration across an 80-mm gap using a polyglycolic acid (PGA)-collagen nerve conduit filled with laminin-soaked collagen sponge in dogs.  Int J Artif Organs. 2002;  25 230-237
  • 116 Tsao J W, George E B, Griffin J W. Temperature modulation reveals three distinct stages of Wallerian degeneration.  J Neurosci. 1999;  19 4718-4726
  • 117 Tucker R P, Hagios C, Santiago A, Chiquet-Ehrismann R. Tenascin-Y is concentrated in adult nerve roots and has barrier properties in vitro.  J Neurosci Res. 2001;  66 439-447
  • 118 Unsicker K, Grothe C, Westermann R, Wewetzer K. Cytokines in neural regeneration.  Curr Opin Neurobiol. 1992;  2 671-678
  • 119 Urschel B A, Brown P N, Hulsebosch C E. Differential effects on sensory nerve processes and behavioral alterations in the rat after treatment with antibodies to nerve growth factor.  Exp Neurol. 1991;  114 44-52
  • 120 Varga Z M, Schwab M E, Nicholls J G. Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture.  Proc Natl Acad Sci USA. 1995;  92 10959-10963
  • 121 Wallquist W, Patarroyo M, Thams S, Carlstedt T, Stark B, Cullheim Hammarberg H. Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury.  J Comp Neurol. 2002;  454 284-293
  • 122 Watanabe O, Mackinnon S E, Tarasidis G, Hunter D A, Ball D J. Long-term observation of the effect of peripheral nerve injury in neonatal and young rats.  Plast Reconstr Surg. 1998;  102 2072-2081
  • 123 Webb K, Budko E, Neuberger R J, Chen S, Schachner M, Tresco P A. Substrate-bound human recombinant L1 selectively promotes neuronal attachment and outgrowth in the presence of astrocytes and fibroblasts.  Biomaterials. 2001;  22 1017-1028
  • 124 Werner K, Bitsch A, Bunkowski S, Hemmerlein B, Bruck W. The relative number of macrophages/microglia expressing macrophage colony-stimulating factor and its receptor decreases in multiple sclerosis lesions.  Glia. 2002;  40 121-129
  • 125 Wewetzer K, Grothe C, Claus P. In vitro expression and regulation of rat fibroblast growth factor-2 isoforms on PC12 and Schwann cells.  Growth Factors. 2001;  19 175-191
  • 126 Wiesmann C, de Vos A M. Nerve growth factor: structure and function.  Cell Mol Life Sci. 2001;  58 746-759
  • 127 Xu G, Pierson C R, Murakawa Y, Sima A A. Altered tubulin and neurofilament expression and impaired axonal growth in diabetic nerve regeneration.  J Neuropathol Exp Neurol. 2002;  61 164-175
  • 128 Xu G, Sima A A. Altered immediated early gene expression in injured diabetic nerve: implications in regeneration.  J Neuropathol Exp Neurol. 2001;  60 972-983
  • 129 Yamamoto M, Sobue G, Li M, Arakawa Y, Mitsuma T, Kimata K. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and low-affinity nerve growth factor receptor (LNGFR) mRNA levels in cultured Schwann cells; differential time and dose-dependent regulation by cAMP.  Neurosci Lett. 1993;  152 37-40
  • 130 Yamamoto M, Mitsuma N, Hattor N, Sobue G. Parallel expression of neurotrophic factors and their receptor in chronic inflammatory demyelinating polyneuropathy.  Muscle Nerve. 2002;  25 601-604
  • 131 Ye P, Li L, Richards R G, DiAugustine R P, D'Ercole A J. Myelination is altered in insuline-like growth factor-I null mutant mice.  J Neurosci. 2002;  22 6041-6051
  • 132 Yin Q, Kemp G J, Frostick S P. Neurotrophins, neurones and peripheral nerve regeneration.  J Hand Surg. 1998 [Br];  23 433-437
  • 133 Yin Yin Q, Kemp G J, Yu L G, Wagstaff S C, Frostick S P. Expression of Schwann cell-specific proteins and low-molecular-weight neurofilament protein during regeneration of sciatic nerve treated with neurotrophin-4.  Neuroscience. 2001;  105 779-783
  • 134 You S, Petrov T, Chung P H, Gordon T. The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells.  Glia. 1997;  20 87-100
  • 135 Zheng J Q, Kelly T K, Chang B, Ryazantsev S, Rajasekaran A K, Martin K C, Twiss J L. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons.  J Neurosci. 2001;  21 9291-9303

1 Herrn o. Univ.-Prof. Dr. Wolfgang Schneider zum 60. Geburtstag gewidmet

PD Dr. med. Hisham Fansa

Klinik für Plastische, Wiederherstellungs- und Handchirurgie
Otto-von-Guericke-Universität

Leipziger Straße 44

39120 Magdeburg

Email: h@fansa.de

    >