Int J Sports Med 2003; 24(6): 404-409
DOI: 10.1055/s-2003-41183
Physiology & Biochemistry

© Georg Thieme Verlag Stuttgart · New York

The Effects of Exercise Training on Markers of Endothelial Function in Young Healthy Men

S.  E.  O'Sullivan1
  • 1Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
Further Information

Publication History

Accepted after revision: October 25, 2002

Publication Date:
07 August 2003 (online)

Abstract

This study investigated the effects of fitness and of acute exercise on a range of markers of endothelial function in young, healthy adult male subjects who were classified on the basis of maximum oxygen consumptions as being fit (V˙O2peak 71 ± 2 [ml × min-1] × kg-1) or sedentary (V˙O2peak 53 ± 2 [ml × min-1] × kg-1). Fit and sedentary subjects had similar resting plasma levels of von Willebrand factor (vWF) and thrombomodulin (TM). Acute maximal aerobic exercise doubled plasma vWF in fit subjects but had no effect in the sedentary population; plasma TM rose with acute exercise in each group but to a greater extent in the fit population. Fit subjects also had higher numbers of circulating endothelial cells (CECs) at rest and exhibited substantially greater forearm reactive hyperaemia responses following a standardized period of arterial occlusion. A cohort of sedentary subjects was given a 5-week training programme of moderate aerobic exercise on a cycle ergometer. Following this, absolute fitness was increased by only 8 % but reactive hyperaemia responses rose to values similar to those in the chronically fit group. The results suggest that both acute and chronic exercise increase endothelial turnover. Chronic exercise is also associated with enhanced endothelium-dependent dilator function and this effect becomes maximal after only a short period of moderate training.

References

  • 1 Awolesi M A, Widmann M D, Sessa W C, Sumpio B E. Cyclic strain increases endothelial nitric oxide synthase activity.  Surgery. 1994;  116 439-444
  • 2 Bartling B, Tostlebe H, Darmer D, Holtz J, Silber R E, Morawietz H. Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells.  Biochem Biophys Res Commun. 2000;  278 740-746
  • 3 Blann A D, Taberner D A. A reliable marker of endothelial cell dysfunction: does it exist?.  Br J Haem. 1995;  90 244-248
  • 4 Chen H I, Liao Y L. Effects of chronic exercise on muscarinic receptor-mediated vasodilation in rate.  Chin J Physiol. 1998;  41 161-166
  • 5 Chen H I, Cheng S Y, Jen C J. Chronic exercise enhances vascular responses to clonidine in rats by increasing endothelial alpha2-adrenergic receptor affinity.  Chin J Physiol. 1999;  42 61-66
  • 6 Chen Y, Collins H L, DiCarlo S E. Daily exercise enhances acetylcholine-induced dilation in mesenteric and hindlimb vasculature of hypertensive rats.  Clin Exp Hypertens. 1999;  21 353-376
  • 7 Cerneca F, Crocetti G, Gombacci A, Simeone R, Tamaro G, Mangiarotti M A. Variations in hemostatic parameters after near-maximum exercise and specific tests in athletes.  J Sports Med Phys Fitness. 1999;  39 31-36
  • 8 Clarkson P, Montgomery H E, Mullen M J, Donald A E, Powe A J, Bull T, Jubb M, World M, Deanfield J E. Exercise training enhances endothelial function in young men.  J Am Coll Cardiol. 1999;  33 1379-1385
  • 9 Dignat-George F, Sampol J. Circulating endothelial cells in vascular disorders: new insights into an old concept.  Eur J Haematol. 2000;  65 215-220
  • 10 Dimmeler S, Haendeler J, Rippmann V, Nehls M, Zeiher A M. Shear stress inhibits apoptosis of human endothelial cells.  FEBS Lett. 1996;  399 71-74
  • 11 Franke W D, Stephens G M, Schmid, 3rd , PG . Effects of intense exercise training on endothelium-dependent exercise-induced vasodilatation.  Clin Physiol. 1998;  18 521-528
  • 12 Gielen S, Schuler G, Hambrecht R. Exercise training in coronary artery disease and coronary vasomotion.  Circ. 2001;  103 E1-6
  • 13 Gilligan D M, Panza J A, Kilcoyne C M, Waclawiw M A, Casino P R, Quyyumi A A. Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation.  Circulation. 1994;  90 2853-2858
  • 14 Green D J, Cable N T, Fox C, Rankin J M, Taylor R R. Modification of forearm resistance vessels by exercise training in young men.  J Appl Physiol. 1994;  77 1829-1833
  • 15 Green D J, Fowler D T, O'Driscoll J G, Blanksby B A, Taylor R R. Endothelium-derived nitric oxide activity in forearm vessels of tennis players.  J Appl Physiol. 1996;  81 943-948
  • 16 Grembowicz K P, Sprague D, McNeil P L. Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress.  Mol Biol Cell. 1999;  10 1247-1257
  • 17 Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J T, Adams V, Niebauer J, Schuler G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure.  Circulation. 1998;  98 2709-2715
  • 18 Hladovec J, Rossman P. Circulating endothelial cells isolated together with platelets and the experimental modification of their counts in rats.  Thromb Res. 1973;  3 665-674
  • 19 Huonker M, Halle M, Keul J. Structural and functional adaptations of the cardiovascular system by training.  Int J Sports Med. 1996;  17 S164-S172
  • 20 Jungersten L, Ambring A, Wall B, Wennmalm A. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans.  J Appl Physiol. 1997;  82 760-764
  • 21 Kingwell B A, Sherrard B, Jennings G L, Dart A M. Four weeks of cycle training increases basal production of nitric oxide from the forearm.  Am J Physiol. 1997;  272 H1070-1077
  • 22 Kingwell B A, Tran B, Cameron J D, Jennings G L, Dart A M. Enhanced vasodilation to acetylcholine in athletes is associated with lower plasma cholesterol.  Am J Physiol. 1996;  270 H2008-H2013
  • 23 Koller A, Huang A, Sun D, Kaley G. Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins.  Circ Res. 1995;  76 544-550
  • 24 Koller A, Kaley G. Role of endothelium in reactive dilation of skeletal muscle arterioles.  Am J Physiol. 1990;  259 H1313-1316
  • 25 Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells.  Blood. 1999;  93 2951-2958
  • 26 O'Sullivan S E, Bell C. The effects of exercise training on circulating endothelial cells and reactive hyperaemia in healthy young males.  J Physiol. 2000;  528 46P
  • 27 Plowman S A, Smith D L. Exercise Physiology for Health, Fitness and Performance. Boston; Allyn and Bacon 1997
  • 28 Podrouzkova B, Klabusay L, Drapelova L, Vyoralova B. The significance of circulating endothelial cells in type 2 diabetes.  Vnitr Lek. 1992;  38 976-979
  • 29 Rodriguez-Plaza L G, Alfieri A B, Cubeddu L X. Urinary excretion of nitric oxide metabolites in runners, sedentary individuals and patients with coronary artery disease: effects of 42 km marathon, 15 km race and a cardiac rehabilitation program.  J Cardiovasc Risk. 1997;  4 367-372
  • 30 Seigneur M, Dufourcq P, Conri C, Constans J, Mercie P, Pruvost A, Boisseau M. Plasma thrombomodulin: new approach of endothelium damage.  Int Angiol. 1993;  12 355-359
  • 31 Sessa W C, Pritchard K, Seyedi N, Wang J, Hintze T H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression.  Circ Res. 1994;  74 349-353
  • 32 Shen W, Zhang X, Zhao G, Wolin M S, Sessa W, Hintze T H. Nitric oxide production and NO synthase gene regulation contribute to vascular regulation during exercise.  Med Sci Sports Exerc. 1995;  27 1125-1134
  • 33 Shen W, Xu X, Ochoa M, Zhao G, Bernstein R D, Forfia P, Hintze T H. Endogenous nitric oxide in the control of skeletal muscle oxygen extraction during exercise.  Acta Physiol Scand. 2000;  168 675-686
  • 34 Shepard J T. Physiology of the Circulation in Human Limbs in Health and Disease. Philadelphia; W.B. Saunders Company 1963
  • 35 van den Burg P J, Hospers J E, Mosterd W L, Bouma B N, Huisveld I A. Aging, physical conditioning, and exercise-induced changes in hemostatic factors and reaction products.  J Appl Physiol. 2000;  88 1558-1564
  • 36 Wu K K, Thiagarajan P. Role of endothelium in thrombosis and hemostasis.  Ann Rev Med. 1996;  47 315-331
  • 37 Yen M H, Yang J H, Sheu J R, Lee Y M, Ding Y A. Chronic exercise enhances endothelium-mediated dilation in spontaneously hypertensive rats.  Life Sci. 1995;  57 2205-2213
  • 38 Yu Q C, McNeil P L. Transient disruptions of aortic endothelial cell plasma membranes.  Am J Pathol. 1992;  141 1349-1360
  • 39 Zhu Z. Changes in circulating endothelial cells in patients with essential hypertension.  Chung Hua hsin hsueh Kuan Ping Tsa Chih. 1991;  19 217-218

S. E. O'Sullivan

Dept. of Physiology · Trinity College Dublin

College Green · Dublin 2 · Ireland ·

Phone: +3531-6081131

Fax: +3531-6793545

Email: sosulli5@tcd.ie

Email: saoirse_osullivan@hotmail.com

    >