References
<A NAME="RU16003ST-1">1</A>
Kondo K.
Kazuta K.
Fujita H.
Sakamoto Y.
Murakami Y.
Tetrahedron
2002,
58:
5209
<A NAME="RU16003ST-2">2</A>
von Matt P.
Pfaltz A.
Angew. Chem., Int. Ed. Engl.
1993,
32:
566
<A NAME="RU16003ST-3">3</A>
Trost BM.
Van Vranken DL.
Bingel C.
J. Am. Chem. Soc.
1992,
114:
9327
Grignard cross-coupling reaction is called the Kumada-Corriu reaction:
<A NAME="RU16003ST-4A">4a</A>
Tamao K.
Sumitani K.
Kumada M.
J. Am. Chem. Soc.
1972,
94:
4374
<A NAME="RU16003ST-4B">4b</A>
Corriu RJP.
Masse JP.
J. Chem. Soc., Chem. Commun.
1972,
144
<A NAME="RU16003ST-5A">5a</A>
Hayashi T.
Fukushima M.
Konishi M.
Kumada M.
Tetrahedron Lett.
1980,
21:
79
<A NAME="RU16003ST-5B">5b</A>
Hayashi T.
Konishi M.
Fukushima M.
Mise T.
Kagotani M.
Tajika M.
Kumada M.
J. Am. Chem. Soc.
1982,
104:
180
<A NAME="RU16003ST-5C">5c</A>
Hayashi T.
Hagihara T.
Katsuro Y.
Kumada M.
Bull. Chem. Soc. Jpn.
1983,
56:
363
<A NAME="RU16003ST-5D">5d</A>
Hayashi T.
Konishi M.
Fukushima M.
Kanehira K.
Hioki T.
Kumada M.
J. Org. Chem.
1983,
48:
2195
<A NAME="RU16003ST-5E">5e</A>
Hayashi T.
Yamamoto A.
Hojo M.
Ito Y.
J. Chem. Soc., Chem. Commun.
1989,
495
<A NAME="RU16003ST-6A">6a</A>
Vriesema BK.
Kellogg RM.
Tetrahedron Lett.
1986,
27:
2049
<A NAME="RU16003ST-6B">6b</A>
Cross G.
Vriesema BK.
Boven G.
Kellogg RM.
van Bolhuis F.
J. Organomet. Chem.
1989,
370:
357
<A NAME="RU16003ST-6C">6c</A>
Baker KV.
Brown JM.
Cooley NA.
Hughes GD.
Taylar RJ.
J. Organomet. Chem.
1989,
370:
397
<A NAME="RU16003ST-6D">6d</A>
Jedlicka B.
Kratky C.
Weissensteiner W.
Widhalm M.
J. Chem. Soc., Chem. Commun.
1993,
1329
<A NAME="RU16003ST-6E">6e</A>
Pellet-Rostaing S.
Saluzzo C.
Halle RT.
Breuzard J.
Vial L.
Guyader FL.
Lemaire M.
Tetrahedron: Asymmetry
2001,
12:
1983
<A NAME="RU16003ST-7A">7a</A>
Kreuzfeld H.-J.
Döbler C.
Abicht H.-P.
J. Organomet. Chem.
1987,
336:
287
<A NAME="RU16003ST-7B">7b</A>
Döbler C.
Kreuzfeld H.-J.
J. Organomet. Chem.
1988,
344:
249
<A NAME="RU16003ST-7C">7c</A>
Uemura M.
Miyake R.
Nishimura H.
Matsumoto Y.
Hayashi T.
Tetrahedron: Asymmetry
1992,
3:
213
<A NAME="RU16003ST-7D">7d</A>
Yamago S.
Yanagawa M.
Nakamura E.
J. Chem. Soc., Chem. Commun.
1994,
52:
2093
<A NAME="RU16003ST-7E">7e</A>
Richards CJ.
Hibbs DE.
Hursthouse MB.
Tetrahedron Lett.
1995,
36:
3745
<A NAME="RU16003ST-7F">7f</A>
Yamago S.
Yanagawa M.
Mukai H.
Nakamura E.
Tetrahedron
1996,
52:
5091
<A NAME="RU16003ST-7G">7g</A>
Lloyd-Jones GC.
Butts CP.
Tetrahedron
1998,
54:
901
<A NAME="RU16003ST-8">8</A>
Schwink L.
Knochel P.
Chem.-Eur. J.
1998,
4:
950
<A NAME="RU16003ST-9">9</A>
Hayashi M.
Takaoki K.
Hashimoto Y.
Saigo K.
Enantiomer
1997,
2:
293
<A NAME="RU16003ST-10">10</A> For a planar chiral mimetic, see:
Jones G.
Butler DCD.
Richards CJ.
Tetrahedron Lett.
2000,
41:
9351
<A NAME="RU16003ST-11">11</A>
Ogawa A.
Curran DP.
J. Org. Chem.
1997,
62:
450
<A NAME="RU16003ST-12">12</A>
The use of other solvents such as THF, CH2Cl2 and toluene, and the use of nickel salts in place of PdCl2(MeCN)2, gave less satisfactory results.
Use of the ligand 1o (Figure 4) possessing a pendant methoxy group resulted in no reaction. For the ligand
1o, see:
<A NAME="RU16003ST-13A">13a</A>
Miyano S,
Hattori T,
Komuro Y, and
Kumobayashi H. inventors; Jpn. Kokai Tokkyo koho, H09241277.
; Chem. Abstr. 1997, 127, 302486h
<A NAME="RU16003ST-13B">13b</A>
Kondo K.
Fujita H.
Iida T.
Suzuki T.
Murakami Y.
30thCongress of Heterocyclic Chemistry, November 24-26th
Hachioji;
Japan:
1999.
<A NAME="RU16003ST-13C">13c</A>
Mino T.
Tanaka Y.
Sakamoto M.
Fujita T.
Heterocycles
2000,
53:
1485
<A NAME="RU16003ST-14">14</A>
The use of ligand 1i at ca.-20 °C afforded the coupling product with 25% yield and 80% ee.
The physical data of 3a, 3b, 3d and 3e were comparable to those reported:
<A NAME="RU16003ST-15A">15a</A>
Graven A.
Jorgensen KA.
Dahl S.
Stanczak A.
J. Org. Chem.
1994,
59:
3543
<A NAME="RU16003ST-15B">15b</A>
Ranu BC.
Samanta S.
Guchhait SK.
J. Org. Chem.
2001,
66:
4102
<A NAME="RU16003ST-15C">15c</A>
The new styrene derivative 3c was characterized by IR, 1H- and 13C NMR, MS, and HRMS. The 1H NMR data of 3c are shown below: 1H NMR (CDCl3): δ = 1.24 (d, J = 6.9 Hz, 3 H × 2), 2.88 (sept, J = 6.9 Hz, 1 H), 6.70 (d, J = 13.8 Hz, 1 H), 7.07 (d, J = 13.8 Hz, 1 H), 7.13-7.29 (m, 4 H).
<A NAME="RU16003ST-16">16</A>
The use of vinyl bromide and 1-propenyl bromide as substrates resulted in no reaction.
<A NAME="RU16003ST-17">17</A>
The racemic and optically active carboxylic acid 7 were purchased from Aldrich Co., Ltd.
<A NAME="RU16003ST-18">18</A>
The ligands 1b, 1d, 1e, and 1g-i were reported by us.
[1]
The new ligands 1a, 1c, 1f, 1j-l and 1n were characterized by IR, 1H- and 13C NMR, FABMS, and elemental analysis. All ligands 1a-n were synthesized according to the typical procedure described below.
(
S
)-
N
-[2-(Diphenylphosphanyl)naphthalen-1-yl]-2-(piperidinylmethyl)piperidine (
1j). To a stirred solution of (S)-2-(piperidinylmethyl)piperidine (700 mg, 3.84 mmol) in THF (4.0 mL) was gradually
added BuLi (2.53 mL, 4.00 mmol, 1.58 M solution in hexane) at -30 °C, and the mixture
was stirred for 2 h at the same temperature. To this solution was then added a solution
of 1-methoxy-2-(diphenylphos-phinoyl)naphthalene (680 mg, 1.90 mmol) in THF (2.0 mL)
at -30 °C. The whole mixture was stirred for 1 h at the same temperature, quenched
with H2O and extracted with EtOAc. The organic extracts were successively washed with saturated
aq NH4Cl and brine, dried (Na2SO4) and concentrated. Purification by silica gel column (Fuji Silysia Chromatorex NH,
EtOAc/hexane=1:5) gave a mixture (724 mg) of 1-(S)-N-[2-(diphenylphosphonyl)naphthalen-1-yl]-2-(piperidinylmethyl)piperidine and small
amounts of impurities. This mixture was used for the next step without further separation.
IR (neat): ν = 1308, 1254, 1192, 1161 cm-1. 1H NMR (CDCl3): δ = 0.75-1.15 (m, 8 H), 1.24-1.45 (m, 2 H), 1.60-1.94 (m, 8 H), 2.46 (dd, J = 13.3, 5.9 Hz, 1 H), 2.92 (br d, J = 11.1 Hz, 1 H), 3.36 (dd, J = 11.1, 11.1 Hz, 1 H), 3.51-3.62 (br, 1 H), 6.97 (dd, J = 12.1, 8.6 Hz, 1 H), 7.35-7.57 (m, 10 H), 7.65-7.87 (m, 4 H), 8.23 (d, J = 8.4 Hz, 1 H). 13C NMR (CDCl3): 24.29, 24.90, 25.47, 25.63, 31.38, 54.80, 56.09, 60.55, 62.23, 125.15, 125.42,
125.62, 126.21, 127.02, 127.95, 128.13, 128.65, 129.02, 129.22, 129.77, 130.74, 131.09,
131.23, 131.37, 131.94, 132.07, 134.15, 134.65, 135.09, 135.22, 135.66, 136.22, 136.63,
155.14. FABMS: m/z = 509 (M+ + 1). The above mixture was dissolved in p-xylene (7.0 mL), and Et3N (2.10 mL, 15.1 mmol) and HSiCl3 (1.4 mL, 14 mmol) were added at 0 °C. The whole mixture was heated at 140 °C for
2 h. After being cooled to r.t., the reaction mixture was carefully poured into 10%
NaOH, and the whole mixture was extracted with EtOAc. The organic extracts were successively
washed with water and brine, dried (Na2SO4), and concentrated. Purification by silica gel column (Fuji Silysia Chromatorex
NH, hexane/EtOAc = 20:1) gave (S)-N-[2-(diphenylphos-phanyl)naphthyl]-2-(piperidinylmethyl)piperidine (1j)
(505 mg, 54% in 2 steps) as a colorless amorphous.
[α]D
28 +115 (c 1.60, dioxane). IR(nujol): ν = 1300, 1275, 1206, 1159 cm-1. 1H NMR (CDCl3): δ = 0.83-2.22 (m, 18 H), 2.66 (br d, J = 11.5 Hz, 1 H × 4/5), 3.01 (br d, J = 11.2 Hz, 1 H × 1/5), 3.30 (br dd, J = 11.5, 10.6 Hz, 1 H × 4/5), 3.45-3.53 (br, 1 H × 1/5), 3.55-3.73 (br, 1 H × 4/5),
4.13-4.28 (br, 1 H × 1/5), 6.89 (dd, J = 8.6, 2.4 Hz, 1 H × 4/5), 7.09 (dd, J = 8.6, 3.8 Hz, 1 H × 1/5), 7.14-7.57 (m, 13 H), 7.72-7.77 (m, 1 H × 1/5), 7.81 (dd,
J = 6.3, 3.5 Hz, 1 H × 4/5), 8.05 (dd, J = 6.3, 3.5 Hz, 1 H × 4/5), 8.63 (dd, J = 6.3, 3.5 Hz,
1 H × 1/5). 13C NMR (CDCl3): 24.05, 24.29, 24.41, 25.27, 25.71, 25.93, 26.02, 27.47, 29.75, 31.59, 32.34, 54.10,
54.32, 54.93, 55.10, 57.17, 57.38, 59.20, 61.70, 62.50, 62.59, 124.80, 124.94, 125.49,
125.57, 125.78, 125.95, 126.02, 126.71, 127.44, 127.90, 127.97, 128.00, 128.13, 128.17,
128.27, 128.37, 128.63, 129.50, 131.91, 132.72, 133.00, 133.29, 133.54, 133.80, 133.95,
134.10, 134.26, 134.54, 134.66, 135.01, 135.19, 136.92, 137.40, 137.60, 138.35, 138.54,
138.81, 139.00, 139.63, 139.87, 150.99, 151.30, 153.92, 154.28. FABMS: m/z = 493 (M+ + 1). Anal. Calcd for C33H37N2P: C, 80.46; H, 7.57; N, 5.69, Found: C, 80.27; H, 7.56; N, 5.85.
Typical Procedure for Grignard Cross-Coupling Reaction of (
E
)-β-Bromostyrene(3a) with Ligand 1j (entry 3, Table 2). 1-Phenylethylmagnesium chloride (4) (2.10 mL, 1.50 mmol, 0.70 mol/L in Et2O) was added to the mixture of PdCl2(MeCN)2 (9.3 mg, 0.036 mmol) and the ligand 1j (18.2 mg, 0.0369 mmol) in α,α,α-trifluorotoluene (2.10 mL) at 0 °C, and the solution
was stirred at the same temperature for 30 min (CAUTION: stirring at 0 °C for 30 min
for the favorable complexation of Pd and ligand 1j is needed.). To the solution was added (E)-β-bromostyrene (3a) (133 mg, 0.727 mmol) at -10 °C. The resulting solution was stirred for 6 h at -10
°C. After usual work-up, purification by silica gel column(hexane) afforded the coupling
product 5a (105 mg, 69%, 72% ee) as a colorless oil. The ee was determined by HPLC analysis
(Daicel chiralcel OD, hexane/i-PrOH = 100:1, 0.3 mL/min, 254 nm): tR/min = 34.9 (S), 37.1 (R).
For other catalytic asymmetric Grignard cross-couplings, see:
<A NAME="RU16003ST-19A">19a</A>
Tamao K.
Minato A.
Miyake N.
Matsuda T.
Kiso Y.
Kumada M.
Chem. Lett.
1975,
133
<A NAME="RU16003ST-19B">19b</A>
Tamao K.
Yamamoto H.
Matsumoto H.
Miyake N.
Hayashi T.
Kumada M.
Tetrahedron Lett.
1977,
1389
<A NAME="RU16003ST-19C">19c</A>
Hayashi T.
Konishi M.
Okamoto Y.
Kabeta K.
Kumada M.
J. Org. Chem.
1986,
51:
3772
<A NAME="RU16003ST-19D">19d</A>
Iida A.
Yamashita M.
Bull. Chem. Soc. Jpn.
1988,
61:
2365
<A NAME="RU16003ST-19E">19e</A>
Hayashi T.
Hayashizaki K.
Kiyoi T.
Ito Y.
J. Am. Chem. Soc.
1988,
110:
8153
<A NAME="RU16003ST-19F">19f</A>
Hayashi T.
Hayashizaki K.
Ito Y.
Tetrahedron Lett.
1989,
30:
215
<A NAME="RU16003ST-19G">19g</A>
Hayashi T.
Niizuma S.
Kamikawa T.
Suzuki N.
Uozumi Y.
J. Am. Chem. Soc.
1995,
117:
9101
<A NAME="RU16003ST-19H">19h</A>
Kamikawa T.
Hayashi T.
Tetrahedron
1999,
55:
3455
<A NAME="RU16003ST-19I">19i</A>
Hölzer B.
Hoffmann RW.
Chem. Commun.
2003,
732
Another type of catalytic asymmetric cross-coupling, the Suzuki and Miyaura reaction,
has been reported, see:
<A NAME="RU16003ST-20A">20a</A>
Cho SY.
Shibasaki M.
Tetrahedron: Asymmetry
1998,
9:
3751
<A NAME="RU16003ST-20B">20b</A>
Cammidge AN.
Crépy KVL.
Chem. Commun.
2000,
1723
<A NAME="RU16003ST-20C">20c</A>
Yin J.
Buchwald SL.
J. Am. Chem. Soc.
2000,
122:
12051
<A NAME="RU16003ST-20D">20d</A>
Castanet A.-S.
Colobert F.
Broutin P.-E.
Obringer M.
Tetrahedron: Asymmetry
2002,
13:
659
For recent chiral P,N(sp3)-ligands, see:
<A NAME="RU16003ST-21A">21a</A>
Mino T.
Tanaka Y.
Akita K.
Sakamoto M.
Fujita T.
Heterocycles
2003,
60:
9
<A NAME="RU16003ST-21B">21b</A>
Shibatomi K.
Uozumi Y.
Tetrahedron: Asymmetry
2002,
13:
1769
<A NAME="RU16003ST-21C">21c</A>
Jin M.-J.
Kim S.-H.
Lee S.-J.
Kim Y.-M.
Tetrahedron Lett.
2002,
43:
7409
<A NAME="RU16003ST-21D">21d</A>
Uozumi Y.
Shibatomi K.
J. Am. Chem. Soc.
2001,
123:
2919
<A NAME="RU16003ST-21E">21e</A>
Mino T.
Hata S.
Ohtaka K.
Sakamoto M.
Fujita T.
Tetrahedron Lett.
2001,
42:
4837
<A NAME="RU16003ST-21F">21f</A>
Okuyama Y.
Nakano H.
Hongo H.
Tetrahedron: Asymmetry
2000,
11:
1193
<A NAME="RU16003ST-21G">21g</A>
Suzuki Y.
Abe I.
Hiroi K.
Heterocycles
1999,
50:
89
<A NAME="RU16003ST-21H">21h</A>
Cahill JP.
Cunneen D.
Guiry PJ.
Tetrahedron: Asymmetry
1999,
10:
4157
<A NAME="RU16003ST-21I">21i</A>
Bourghida M.
Widhalm M.
Tetrahedron: Asymmetry
1998,
9:
1073
<A NAME="RU16003ST-21J">21j</A>
Hattori T.
Komuro Y.
Hayashizaka N.
Takahashi H.
Miyano S.
Enantiomer
1997,
2:
203 ; and references cited therein
<A NAME="RU16003ST-22">22</A> During the completion of this manuscript, we became aware of a recent report
by Mino, T. et al. of the Pd-catalyzed asymmetric allylic alkylation with the ligand
1m:
Mino T.
Tanaka Y.
Sato Y.
Saito A.
Sakamoto M.
Fujita T.
Tetrahedron Lett.
2003,
44:
4677