References
<A NAME="RG16603ST-1A">1a</A>
Tanahashi T.
Takenaka Y.
Nagakura N.
Hamada N.
Phytochemistry
2001,
58:
1129
<A NAME="RG16603ST-1B">1b</A>
Miyagawa H.
Yamashita M.
Ueno T.
Hamada N.
Phytochemistry
1997,
46:
1289
<A NAME="RG16603ST-1C">1c</A>
Harborne JB.
Nat. Prod. Rep.
1997,
14:
83
<A NAME="RG16603ST-1D">1d</A>
Elix JA.
Naidu R.
Laundon JR.
Aust. J. Chem.
1994,
47:
703
<A NAME="RG16603ST-1E">1e</A>
Huneck S.
Elix JA.
Naidu R.
Follmann G.
Aust. J. Chem.
1993,
46:
407
<A NAME="RG16603ST-1F">1f</A>
Chester DO.
Elix JA.
Aust. J. Chem.
1981,
34:
1501
<A NAME="RG16603ST-1G">1g</A>
El Sohly MA.
Slatkin DJ.
Knapp JE.
Doorenbos NJ.
Quimby MW.
Schiff PL.
Gopalakrishna EM.
Watson WH.
Tetrahedron
1977,
33:
1711
<A NAME="RG16603ST-1H">1h</A>
Friedrich-Fiechtl J.
Spiteller G.
Tetrahedron
1975,
31:
479
<A NAME="RG16603ST-2A">2a</A>
Dean FM.
Sargent MV. In Comprehensive Heterocyclic Chemistry
Part 3, Vol. 4:
Bird CW.
Cheeseman GWH.
Pergamon Press;
New York:
1984.
p.531
<A NAME="RG16603ST-2B">2b</A>
Bird CW.
Cheeseman GWH. In Comprehensive Heterocyclic Chemistry
Part 3, Vol. 4:
Bird CW.
Cheeseman GWH.
Pergamon Press;
New York:
1984.
p.89
<A NAME="RG16603ST-2C">2c</A>
Benassi R. In Comprehensive Heterocyclic Chemistry II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
New York:
1996.
p.259
<A NAME="RG16603ST-2D">2d</A>
Heaney H.
Ahn JS. In Comprehensive Heterocyclic Chemistry II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
New York:
1996.
p.297
<A NAME="RG16603ST-2E">2e</A>
Friedrichsen W. In Comprehensive Heterocyclic Chemistry II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
New York:
1996.
p.351
<A NAME="RG16603ST-2F">2f</A>
Keay BA.
Dibble PW. In Comprehensive Heterocyclic Chemistry II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
New York:
1996.
p.395
<A NAME="RG16603ST-3A">3a</A>
Carvalho CF.
Sargent MV.
J. Chem. Soc., Perkin Trans. 1
1984,
1621
<A NAME="RG16603ST-3B">3b</A>
Carvalho CF.
Sargent MV.
J. Chem. Soc., Perkin Trans. 1
1984,
1613
<A NAME="RG16603ST-3C">3c</A>
Åkermark B.
Eberson L.
Jonsson E.
Pettersson E.
J. Org. Chem.
1975,
40:
1365
<A NAME="RG16603ST-4A">4a</A>
Arienti A.
Bigi F.
Maggi R.
Moggi P.
Rastelli M.
Sartori G.
Trerè A.
J. Chem. Soc., Perkin Trans. 1
1997,
1391
<A NAME="RG16603ST-4B">4b</A>
Yamato T.
Hideshima C.
Prakash GKS.
Olah GA.
J. Org. Chem.
1991,
56:
3192
<A NAME="RG16603ST-4C">4c</A>
Novák J.
Salemink CA.
Tetrahedron Lett.
1983,
24:
101
<A NAME="RG16603ST-4D">4d</A>
Novák J.
Salemink CA.
J. Chem. Soc., Perkin Trans. 1
1983,
2873
<A NAME="RG16603ST-5A">5a</A>
Jean F.
Melnyk O.
Tartar A.
Tetrahedron Lett.
1995,
36:
7657
<A NAME="RG16603ST-5B">5b</A>
Tye H.
Eldred C.
Wills M.
Synlett
1995,
770
<A NAME="RG16603ST-6A">6a</A>
Katritzky AR.
Fali CN.
Li J.
J. Org. Chem.
1997,
62:
8205
<A NAME="RG16603ST-6B">6b</A>
Sha C.-K.
Lee R.-S.
Tetrahedron
1995,
51:
193
<A NAME="RG16603ST-6C">6c</A>
Iwasaki M.
Kobayashi Y.
Li J.-P.
Matsuzaka H.
Ishii Y.
Hidai M.
J. Org. Chem.
1991,
56:
1922
<A NAME="RG16603ST-6D">6d</A>
Carvalho CF.
Sargent MV.
J. Chem. Soc., Perkin Trans. 1
1984,
1605
<A NAME="RG16603ST-6E">6e</A>
Scannell RT.
Stevenson R.
J. Chem. Soc., Perkin Trans. 1
1983,
2927
<A NAME="RG16603ST-6F">6f</A>
Scannell RT.
Stevenson R.
J. Chem. Res., Synop.
1983,
319
<A NAME="RG16603ST-6G">6g</A>
Sargent MV.
Stransky PO.
J. Chem. Soc., Perkin Trans. 1
1982,
1605
<A NAME="RG16603ST-6H">6h</A>
Fujiwara Y.
Maruyama O.
Yoshidomi M.
Taniguchi H.
J. Org. Chem.
1981,
46:
851
<A NAME="RG16603ST-7">7</A>
Serra S.
Fuganti C.
Moro A.
J. Org. Chem.
2001,
66:
7883 ; and references cited therein
<A NAME="RG16603ST-8">8</A>
Serra S.
Fuganti C.
Synlett
2002,
1661
2-Iodoanisole 5a is commercially available. The substituted 2-iodoanisoles 5b, 5c and 5e were prepared from 1,4-dimethoxy-3-methylbenzene, p-nitroanisole and hydroquinone dimethyl ether, respectively by halogenation according
to the following references:
<A NAME="RG16603ST-9A">9a</A>
Lucht BL.
Mao SSH.
Tilley TD.
J. Am. Chem. Soc.
1998,
120:
4354
<A NAME="RG16603ST-9B">9b</A>
Robinson GM.
J. Chem. Soc.
1916,
109:
1078
<A NAME="RG16603ST-9C">9c</A>
Wariishi K.
Morishima S.-I.
Inagaki Y.
Org. Proc. Res. Dev.
2003,
7:
98 ; respectively
<A NAME="RG16603ST-9D">9d</A> The substituted 2-iodoanisoles 5d and 5f were prepared from p-hydroxybenzoic acid and β-naphthol respectively, by halogenation followed by methylation
with Me2SO4/K2CO3 in dry acetone. The above mentioned halogenation reaction was performed according
to:
Edgar KJ.
Falling SN.
J. Org. Chem.
1990,
55:
5287
<A NAME="RG16603ST-10A">10a</A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
4467
<A NAME="RG16603ST-10B">10b</A>
The coupling reaction was performed in THF solution using 2 equiv of propargyl alcohol,
Et3N as base and an equimolar amount of copper and palladium catalysts (0.01 equiv).
When the coupling reaction was performed with diiodoanisole 5e, only 1 equiv of propargyl alcohol was used in the preparation.
<A NAME="RG16603ST-11">11</A> For the preparation of this ylide see:
Hudson RF.
Chopard PA.
Helv. Chim. Acta
1963,
46:
2178
The Wittig reaction of ylide 8 with the aldehydes affords the 3-E-alkylidene-succinic acid monoalkyl esters in a highly stereoselective way; for previous
studies on this reaction see:
<A NAME="RG16603ST-12A">12a</A>
Paquette LA.
Schulze MM.
Bolin D.
J. Org. Chem.
1994,
59:
2043
<A NAME="RG16603ST-12B">12b</A>
Röder E.
Krauss H.
Liebigs Ann. Chem.
1992,
177
<A NAME="RG16603ST-13">13</A>
Acids 9a-f (50 mmol) were dissolved in acetic anhydride (48 mL, 0.5 mol). To this solution,
anhyd sodium acetate (8.2 g, 0.1 mol) and hydroquinone (275 mg, 2.5 mmol) were added
in one portion. The obtained heterogeneous mixture was heated at reflux for 1 h under
a nitrogen atmosphere. After cooling to r.t., the acetic anhydride was removed in
vacuo and the residue was treated with ethyl acetate (250 mL) and water (100 mL).
The organic phase was separated, dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography
and crystallization to give phenol derivatives 4a-f.
<A NAME="RG16603ST-14">14</A>
Jorapur VS.
Duffley RP.
Razdan RK.
Synth. Commun.
1984,
14:
203
<A NAME="RG16603ST-15">15</A>
Duff JC.
J. Chem. Soc.
1941,
547
<A NAME="RG16603ST-16">16</A>
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
3769
<A NAME="RG16603ST-17">17</A>
All new compounds were fully characterized. Selected analytical data:
12: Anal. Calcd for C14H18O2: C, 77.03; H, 8.31. Found: C, 77.15; H, 8.35. Bp 150 °C/0.5 mmHg. 1H NMR (250 MHz, CDCl3): δ = 1.22 (6 H, d, J = 6.9 Hz), 2.23 (3 H, s), 2.50-2.85 (1 H, bs), 3.38 (1 H, m), 3.86 (3 H, s), 4.58
(2 H, s), 6.93 (1 H, d, J = 8.0 Hz), 7.10 (1 H, d, J = 8.0 Hz). EI-MS: m/z = 219 (M+ + 1), 218 (M+), 203, 187, 172, 159, 141, 128, 115, 105, 91, 77. FT-IR (film): ν = 813, 1029, 1077,
1237, 1273, 1405, 1459, 1481, 1571, 2225, 2929, 3407 cm-1.
13: Anal. Calcd for C20H24O5: C, 69.75; H, 7.02. Found: C, 69.60; H, 7.10. Mp 59-60 °C (hexane). 1H NMR (250 MHz, CDCl3): δ = 1.22 (6 H, d, J = 6.9 Hz), 1.31 (3 H, t, J = 7.1 Hz), 2.24 (3 H, s), 3.34 (1 H, m), 3.77 (2 H, s), 3.83 (3 H, s), 4.26 (2 H,
q, J = 7.1 Hz), 6.95 (1 H, d, J = 8.0 Hz), 7.15 (1 H, d, J = 8.0 Hz), 7.15 (1 H, s). EI-MS: m/z = 345 (M+ + 1), 344 (M+), 316, 300, 285, 270, 255, 239, 225, 209, 195, 173, 165, 152, 128, 115, 97. FT-IR
(nujol): ν = 762, 1031, 1093, 1212, 1265, 1376, 1459, 1619, 1699, 1719, 2193 cm-1.
14: Anal. Calcd for C21H22O5: C, 71.17; H, 6.26. Found: C, 71.10; H, 6.25. Mp 113-114 °C (isopropyl ether). 1H NMR (250 MHz, CDCl3): δ = 1.36 (6 H, d, J = 6.9 Hz), 1.42 (3 H, t, J = 7.2 Hz), 2.45 (3 H, s), 2.54 (3 H, s), 3.99 (1 H, m), 4.42 (2 H, q, J = 7.2 Hz), 7.19 (1 H, d, J = 7.7 Hz), 7.30 (1 H, d, J = 7.7 Hz), 7.75 (1 H, d, J = 1.2 Hz), 8.16 (1 H, d, J = 1.2 Hz). EI-MS: m/z = 355 (M+ + 1), 354 (M+), 312, 297, 283, 267, 255, 239, 224, 205, 195, 178, 165, 152, 139, 128, 115, 102,
89. FT-IR(nujol): ν = 770, 1065, 1195, 1229, 1310, 1368, 1411, 1463, 1510, 1571, 1712,
1771 cm-1.
Cannabifuran 15: Anal. Calcd for C21H26O2: C, 81.25; H, 8.44. Found: C, 81.00; H, 8.45. Mp 79-80 °C (hexane). 1H NMR (250 MHz, CDCl3): δ = 0.89 (3 H, t, J = 6.6 Hz), 1.34 (6 H, d, J = 6.8 Hz), 1.20-1.46 (4 H, m), 1.55-1.81 (2 H, m), 2.53 (3 H, s), 2.66 (2 H, t, J = 7.5 Hz), 4.41 (1 H, m), 5.55
(1 H, bs), 6.46 (1 H, s), 7.01 (1 H, s), 7.17 (2 H, m). EI-MS: m/z = 311 (M+ + 1), 310 (M+), 295, 281, 267, 254, 238, 225, 211, 191, 178, 165, 152, 139, 119, 105, 89. FT-IR
(nujol):
ν = 760, 815, 1048, 1061, 1219, 1252, 1426, 1514, 1588, 1618, 1635, 3500 cm-1.
<A NAME="RG16603ST-18">18</A>
Becker H.-D.
Björk A.
Adler E.
J. Org. Chem.
1980,
45:
1596