Abstract
Octyl- and bromo-substituted carbon-sulfur [5]helicene was prepared in several steps
starting from either thiophene or 3-bromothiophene. Pd-catalyzed Negishi cross-coupling
between the β-positions of thiophenes was one of the key steps in the synthesis.
Key words
helical structures - cross-coupling - alkylthiophene - helicene - oligothiophene
References
<A NAME="RC00103ST-1A">1a </A>
Newman MS.
Lutz WB.
Lednicer D.
J. Am. Chem. Soc.
1955,
77:
3420
<A NAME="RC00103ST-1B">1b </A>
Newman MS.
Lednicer D.
J. Am. Chem. Soc.
1956,
78:
4765
<A NAME="RC00103ST-2">2 </A>
Martin RH.
Angew. Chem., Int. Ed. Engl.
1974,
13:
649
<A NAME="RC00103ST-3A">3a </A>
Fuchs W.
Niszel F.
Chem. Ber.
1927,
60:
209
<A NAME="RC00103ST-3B">3b </A>
Zander M.
Franke WH.
Chem. Ber.
1969,
102:
2729
<A NAME="RC00103ST-4A">4a </A>
Urbano A.
Angew. Chem. Int. Ed.
2003,
42:
3986
<A NAME="RC00103ST-4B">4b </A>
Schmuck C.
Angew. Chem. Int. Ed.
2003,
42:
2448
<A NAME="RC00103ST-5A">5a </A>
Nuckolls C.
Katz TJ.
Katz G.
Collings PJ.
Castellanos L.
J. Am. Chem. Soc.
1999,
121:
79
<A NAME="RC00103ST-5B">5b </A>
Paruch K.
Vyklicky L.
Katz TJ.
Incarvito CD.
Rheingold AL.
J. Org. Chem.
2000,
65:
8774
<A NAME="RC00103ST-6A">6a </A>
Verbiest T.
Van Elshocht S.
Kauranen M.
Hellemans L.
Snauwaert J.
Nuckolls C.
Katz TJ.
Persoons A.
Science
1998,
282:
913
<A NAME="RC00103ST-6B">6b </A>
Fox JM.
Katz TJ.
Elshocht SV.
Verbiest T.
Kauranen M.
Persoons A.
Thongpanchang T.
Krauss T.
Brus L.
J. Am. Chem. Soc.
1999,
121:
3453
<A NAME="RC00103ST-7A">7a </A>
Han S.
Bond AD.
Disch RL.
Holmes D.
Schulman JM.
Teat SJ.
Vollhardt KPC.
Whitener GD.
Angew. Chem. Int. Ed.
2002,
41:
3223
<A NAME="RC00103ST-7B">7b </A>
Han S.
Anderson DR.
Bond AD.
Chu HV.
Disch RL.
Holmes D.
Schulman JM.
Teat SJ.
Vollhardt KPC.
Whitener GD.
Angew. Chem. Int. Ed.
2002,
41:
3227
<A NAME="RC00103ST-8">8 </A>
Field JE.
Hill TJ.
Venkataraman D.
J. Org. Chem.
2003,
68:
6071
<A NAME="RC00103ST-9">9 </A>
Teply F.
Stara IG.
Stary I.
Kollarovic A.
Saman D.
Vyskocil S.
Fiedler P.
J. Org. Chem.
2003,
68:
5193
<A NAME="RC00103ST-10">10 </A>
Wachsmann C.
Weber E.
Czugler M.
Seichter W.
Eur. J. Org. Chem.
2003,
2863
<A NAME="RC00103ST-11">11 </A>
Eliel EL.
Wilen SH.
Stereochemistry of Organic Compounds
Wiley;
New York:
1994.
<A NAME="RC00103ST-12">12 </A>
Herman WN.
J. Opt. Soc. Am. A
2001,
18:
2806
<A NAME="RC00103ST-13">13 </A>
Miyamoto Y.
Rubio A.
Cohen ML.
Phys. Rev. B
1999,
60:
13885
Oligothiophenes:
<A NAME="RC00103ST-14A">14a </A>
Roncali J.
Acc. Chem. Res.
2000,
33:
147
<A NAME="RC00103ST-14B">14b </A>
Fichou D.
J. Mater. Chem.
2000,
10:
571
Carbon-sulfur allotropic forms:
<A NAME="RC00103ST-15A">15a </A>
Lee AWM.
Yeung ABW.
Yuen MSM.
Zhang H.
Zhao X.
Wong WY.
Chem. Commun.
2000,
75
<A NAME="RC00103ST-15B">15b </A>
Frapper G.
Saillard J.-Y.
J. Am. Chem. Soc.
2000,
122:
5367
<A NAME="RC00103ST-15C">15c </A>
Genin H.
Hoffmann R.
J. Am. Chem. Soc.
1995,
117:
12328
<A NAME="RC00103ST-15D">15d </A>
Chou J.-H.
Rauchfuss TB.
Z. Naturforsch. B: Chem. Sci
1997,
52:
1549
<A NAME="RC00103ST-16">16 </A>
Meurer PP.
Vögtle F.
Top. Curr. Chem.
1985,
127:
1
Thiophene-based helicenes:
<A NAME="RC00103ST-17A">17a </A>
Phillips KES.
Katz TJ.
Jockusch S.
Lovinger AJ.
Turro NJ.
J. Am. Chem. Soc.
2001,
123:
11899
<A NAME="RC00103ST-17B">17b </A>
Yamada K.
Kobori Y.
Nakagawa H.
Chem. Commun.
2000,
97
<A NAME="RC00103ST-17C">17c </A>
Tanaka K.
Osuga H.
Suzuki H.
Shogase Y.
Kitahara Y.
J. Chem. Soc., Perkin Trans. 1
1998,
935
<A NAME="RC00103ST-17D">17d </A>
Larsen J.
Bechgaard K.
J. Org. Chem.
1996,
61:
1151
<A NAME="RC00103ST-17E">17e </A>
Yamada K.
Ogashiwa S.
Tanaka H.
Nakagawa H.
Kawazura H.
Org. Lett.
1981,
343
<A NAME="RC00103ST-17F">17f </A>
Wynberg H.
Acc. Chem. Res.
1971,
4:
65
<A NAME="RC00103ST-18">18 </A>
Rajca A.
Wang H.
Pink M.
Rajca S.
Angew. Chem. Int. Ed.
2000,
39:
4481
<A NAME="RC00103ST-19">19 </A> Determination of the absolute configuration of 1 by vibrational circular dichroism spectroscopy:
Friedmann TB.
Cao X.
Wang H.
Rajca A.
Nafie LA.
J. Phys. Chem. A
2003,
107:
7692
<A NAME="RC00103ST-20">20 </A> Synthesis of 4-bromo-2-octylthiophene 7 from propargyl bromide via acid-catalyzed
cyclization of acetylenic ketones:
Masquelin T.
Obrecht D.
Tetrahedron Lett.
1994,
35:
9387
<A NAME="RC00103ST-21">21 </A> 3-Bromo-2-trimethylsilylthiophene may also be prepared in 87% yield from 2,3-dibromothiophene:
Deffieux D.
Bonafoux D.
Bordeau M.
Biran C.
Dunogues J.
Organometallics
1996,
15:
2041
<A NAME="RC00103ST-22">22 </A> Weinreb amide:
Nahm S.
Weinreb SM.
Tetrahedron Lett.
1981,
22:
3815
<A NAME="RC00103ST-23">23 </A>
Attempts at direct alkylation of α-metallated 4 with 1-bromooctane resulted in either negligible extent of conversion and/or migration
of the TMS group with alkylation at the α-position adjacent to the bromine.
<A NAME="RC00103ST-24">24 </A> NaBH4 /AlCl3 :
Ono A.
Suzuki N.
Kamimura J.
Synthesis
1987,
736
<A NAME="RC00103ST-25">25 </A>
t -BuOK-mediated alkylation:
Brandsma L.
Mal’kina AG.
Lochman L.
von Schleyer PR.
Recl. Trav. Chim. Pays-Bas
1994,
113:
529
<A NAME="RC00103ST-26">26 </A> 2-Octylthiophene may also be prepared by reaction of iodine with ate complexes
of trioctylborane and 2-thienyllithium:
Sotoyama T.
Hara S.
Suzuki A.
Bull. Chem. Soc. Jpn.
1979,
52:
1865
<A NAME="RC00103ST-27">27 </A> Bromination of 2-octylthiophene:
Pabst GR.
Pfuller OC.
Sauer J.
Tetrahedron
1999,
55:
8045
<A NAME="RC00103ST-28">28 </A> Halogen migration:
Gronowitz S.
Holm B.
Acta Chem. Scand.
1969,
2207
<A NAME="RC00103ST-29">29 </A>
Dai C.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
2719
<A NAME="RC00103ST-30">30 </A>
LDA is added to 13 in Et2 O.
<A NAME="RC00103ST-31">31 </A>
Upon the resolution enhancement (exponential line broadening, LB = -1.20 Hz, and Gaussian
broadening, GB = +0.30 Hz) of the 1 H NMR spectra for Li
1
, the upfield (δ = 6.763 ppm) and the downfield (δ = 6.673 ppm) resonances appear
as a doublet (J = 1.5 Hz, resolved nearly to the baseline) and a broad singlet (with multiple shoulders),
respectively. For Li
2
, the 1 H resonance at δ = 7.231 ppm appears as a broadened triplet (a singlet with two shoulders).
<A NAME="RC00103ST-32">32 </A>
In the presence of (-)-sparteine, yields of 15 , as determined by 1 H NMR spectra of crude mixtures, are in the 40-50% range.
<A NAME="RC00103ST-33A">33a </A>
Allylic coupling of J = 1 Hz is also observed in thiophenes 6 and 7 .
<A NAME="RC00103ST-33B">33b </A>
The downfield shift for the β-proton in dilithiated 14 relative to the monolithiated 14 is found as well (Figure
[2 ]
).
<A NAME="RC00103ST-34">34 </A>
The center part of the multiplet is somewhat broadened.
<A NAME="RC00103ST-35">35 </A>
Rajca A.
Wang H.
Bolshov P.
Rajca S.
Tetrahedron
2001,
57:
3725
<A NAME="RC00103ST-36">36 </A>
Rajca A.
Safronov A.
Rajca S.
Wongsriratanakul J.
J. Am. Chem. Soc.
2000,
122:
3351
<A NAME="RC00103ST-37">37 </A>
Yamada K.
Nakagawa H.
Kawazura H.
Bull. Chem. Soc. Jpn.
1986,
59:
2429
<A NAME="RC00103ST-38A">38a </A>
3,3¢-Bithianaphthenyl 19 : mp 82-83 °C (lit mp 82.7-83.0 °C).
<A NAME="RC00103ST-38B">38b </A>
Wynberg H.
Cabell M.
J. Org. Chem.
1973,
38:
2814 ; these authors report 72% yield of ‘pink solid’ of 19 , prior to column chromatography and recrystallization