Z Gastroenterol 2003; 41(11): 1101-1110
DOI: 10.1055/s-2003-44304
Übersicht
© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Immunobiology and Gene-Based Immunotherapy of Hepatocellular Carcinoma

Immunbiologie und Immuntherapie des hepatozellulären KarzinomsM. Geissler1 , L. Mohr1 , M. Y. Ali1 , C. F. Grimm1 , M. Ritter1 , H . E. Blum1
  • 1Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
Further Information

Publication History

Manuscript received: 3. April 2003

Accepted after revision: 17. April 2003

Publication Date:
01 December 2003 (online)

Zusammenfassung

Einleitung: Das hepatozelluläre Karzinom (HCC) ist einer der häufigsten Tumoren weltweit mit ca. 1 Million Neuerkrankungen pro Jahr. Die Resektion und Lebertransplantation sind die bisher einzigen potenziell kurativen Therapieansätze in ausgewählten Fällen. Lokalablative Verfahren sind komplikationsarm, aber häufig mit Lokalrezidiven, intrahepatischen Metastasen oder neuen HCC-Herden in der zirrhotischen Leber assoziiert. Deshalb sind neue therapeutische Ansätze gegen das HCC und ein verbessertes Verständnis der HCC-Immunbiologie von hoher Priorität. In diesem Artikel sollen neue molekulare Therapieansätze zur Behandlung des HCC und die dafür notwendigen immunpathogenetischen Zusammenhänge dargestellt werden. Material und Methoden: Eine systematische Medline-Literatursuche wurde in allen zitierten Sprachen ab 1970 durchgeführt. Ergebnisse: Eine Vielzahl spezifischer und unspezifischer immunstimulierender Strategien gegen das HCC wurde bisher in präklinischen experimentellen Modellen mit viel versprechenden Resultaten untersucht. Obwohl die bisherigen tumorimmuntherapeutischen Ansätze nur mäßigen klinischen Erfolg bei verschiedenen Tumorentitäten zeigten, konnten mittels neuer molekularer Methoden in den letzten Jahren neue Tumorantigene wie das α-Fetoprotein (AFP) identifiziert werden. Das verbesserte Verständnis der Tumorimmunbiologie ist der Grundstein für eine erfolgreiche Immuntherapie von Tumoren. Erste klinische Phase-I- und -II-Studien mit dem Ziel einer HCC-Immuntherapie unter Verwendung dendritischer Zellen als zelluläres Adjuvans zur Tumorantigenvakzinierung sind inzwischen initiiert. Eine Korrelation von klinischem Verlauf und Monitoring der Immuneffektoren nach Tumorvakzinierung kann mittels neuer immunologischer Techniken, die Immuneffektoren auf Einzelzellebene charakterisieren und in vivo verfolgen können, durchgeführt werden. Zukünftige immuntherapeutische klinische Studien lassen prognostische Parameter für bestimmte Patientenuntergruppen, optimierte Vakzinierungsprotokolle und neue immunologisch-molekulare Surrogatmarker für die Diagnostik von HCCs erwarten.

Abstract

Purpose: Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide. For most patients with advanced or multifocal HCC treatment options are limited resulting in a poor prognosis. Several local ablation methods have been developed as minimally invasive strategies for HCC treatment. It is unclear, until now, whether these therapies will significantly improve the poor prognosis of patients with unresectable HCC. Novel therapeutic strategies and a better understanding of HCC imunobiology are, therefore, urgently required.

Design: The scientific literature since 1970 in all languages cited in Medline was systematically reviewed. Results: Until now, a variety of specific and non-specific immunostimulatory strategies against HCC has been applied in preclinical experimental models with some promising results. The molecular characterization of HCC associated tumour antigens such as α-fetoprotein (AFP) and the increased understanding of the immunological pathways involved in liver and tumor immunology have paved the way for the design of promising gene-based cancer vaccines. The first phase I and II immunotherapeutic clinical trials based on dendritic cell immunotherapy and peptide vaccines are ongoing in HCC-patients. Clinical trials have, in general, demonstrated the safety of such strategies. Recently, exciting new immunological techniques and tools have been developed which allow to characterize antigen specific T cells at a single-cell level. In future, HCC specific tumor rejection antigens which can be used therapeutically have to be identified using microarray-based analysis. The different therapeutic modalities need to be compared directly resulting in optimised therapeutic approaches and the identification of sub-groups of HCC-patients responding favourably to treatment.

References

  • 1 Bosch F X, Ribes J, Borras J. Epidemiology of primary liver cancer.  Sem Liv Dis. 1999;  19 271-285
  • 2 De Vos I, Goldberg D, Hole D J. et al . Trends in primary liver cancer.  Lancet. 1998;  351 215-216
  • 3 El-Serag H B, Mason A C. Rising incidence of hepatocellular carcinoma in the United States.  N Engl J Med. 1999;  340 745-750
  • 4 Okuda K. Early recognition of hepatocellular carcinoma.  Hepatology. 1986;  6 729-738
  • 5 Bismuth H, Chiche L, Adam R. et al . Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients.  Ann Surg. 1993;  218 145-151
  • 6 Allgaier H P, Galandi D, Zuber I. et al . Radiofrequency thermal ablation of hepatocellular carcinoma.  Dig Dis. 2001;  19 301-310
  • 7 Mohr L, Geissler M, Blum H E. Gene therapy for malignant liver disease.  Expert Opin Biol Ther. 2002;  2 163-175
  • 8 Geissler M, Mohr L, Blum H E. Immunotherapy of hepatocellular carcinoma.  Dtsch Med Wochenschr. 2001;  126 1464-1466
  • 9 Butterfield L H, Ribas A. Immunotherapy of hepatocellular carcinoma.  Expert Opin Biol Ther. 2002;  2 123-133
  • 10 Yee C, Riddell S R, Greenberg P D. Prospects for adoptive T cell therapy.  Curr Opin Immunol. 1997;  9 702-708
  • 11 Renner C, Kubuschok B, Trumper L. et al . Clinical approaches to vaccination in oncology.  Ann Hematol. 2001;  80 255-266
  • 12 Wild C P, Hall A J. Primary prevention of hepatocellular carcinoma in developing countries.  Mutat Res. 2000;  462 381-393
  • 13 Schultze J L, Maecker B, von Bergwelt-Baildon M S. et al . Tumour immunotherapy: new tools, new treatment modalities and new T-cell antigens.  Vox Sang. 2001;  80 81-89
  • 14 Mumberg D, Wick M, Schreiber H. Unique tumor antigens redefined as mutant tumor-specific antigens.  Semin Immunol. 1996;  8 289-293
  • 15 Kurokohchi K, Carrington M, Mann D L. et al . Expression of HLA class I molecules and the transporter associated with antigen processing in hepatocellular carcinoma.  Hepatology. 1996;  23 1181-1188
  • 16 Ricci G, Colombo C, Ghiazza B. et al . HLA-A, B, C, DR and DQ expression and hepatocellular carcinoma: study of 205 Italian subjects.  Cancer Lett. 1995;  98 121-125
  • 17 Paterson A C, Sciot R, Kew M C. et al . HLA expression in human hepatocellular carcinoma.  Br J Cancer. 1988;  57 369-373
  • 18 Nagao M, Nakajima Y, Kanehiro H. et al . The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma.  Hepatology. 2000;  32 491-500
  • 19 Kanzler S, Meyer E, Lohse A W. et al . Hepatocellular expression of a dominant-negative mutant TGF-beta type II receptor accelerates chemically induced hepatocarcinogenesis.  Oncogene. 2001;  20 5015-5024
  • 20 Bissell D M, Roulot D, George J. Transforming growth factor beta and the liver.  Hepatology. 2001;  34 859-867
  • 21 Gorelik L, Fields P E, Flavell R A. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression.  J Immunol. 2000;  165 4773-4777
  • 22 Gorelik L, Flavell R A. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease.  Immunity. 2000;  12 171-181
  • 23 Kim K Y, Jeong S Y, Won J. et al . Induction of angiogenesis by expression of soluble type II transforming growth factor-beta receptor in mouse hepatoma.  J Biol Chem. 2001;  276 38781-38786
  • 24 Maggard M, Meng L, Ke B. et al . Antisense TGF-beta2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model.  Ann Surg Oncol. 2001;  8 32-37
  • 25 Gorelik L, Flavell R A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells.  Nat Med. 2001;  7 1118-1122
  • 26 Nagao M, Nakajima Y, Hisanaga M. et al . The alteration of Fas receptor and ligand system in hepatocellular carcinomas: how do hepatoma cells escape from the host immune surveillance in vivo?.  Hepatology. 1999;  30 413-421
  • 27 Patel T. Immune escape in hepatocellular cancer: is a good offense the best defense?.  Hepatology. 1999;  30 576-578
  • 28 Strand S, Hofmann W J, Hug H. et al . Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells - a mechanism of immune evasion?.  Nat Med. 1996;  2 1361-1366
  • 29 Galle P R, Hofmann W J, Walczak H. et al . Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage.  J Exp Med. 1995;  182 1223-1230
  • 30 Weidmann E, Whiteside T L, Giorda R. et al . The T-cell receptor V beta gene usage in tumor-infiltrating lymphocytes and blood of patients with hepatocellular carcinoma.  Cancer Res. 1992;  52 5913-5920
  • 31 Takagi S, Chen K, Schwarz R. et al . Functional and phenotypic analysis of tumor-infiltrating lymphocytes isolated from human primary and metastatic liver tumors and cultured in recombinant interleukin-2.  Cancer. 1989;  63 102-111
  • 32 Wada Y, Nakashima O, Kutami R. et al . Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration.  Hepatology. 1998;  27 407-414
  • 33 Zhang L, Conejo-Garcia J R, Katsaros D. et al . Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.  N Engl J Med. 2003;  348 203-213
  • 34 Shields P L, Morland C M, Salmon M. et al . Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver.  J Immunol. 1999;  163 6236-6243
  • 35 Yoong K F, McNab G, Hubscher S G. et al . Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma.  J Immunol. 1998;  160 3978-3988
  • 36 Yoong K F, Afford S C, Jones R. et al . Expression and function of CXC and CC chemokines in human malignant liver tumors: a role for human monokine induced by gamma-interferon in lymphocyte recruitment to hepatocellular carcinoma.  Hepatology. 1999;  30 100-111
  • 37 Pockaj B A, Sherry R M, Wei J P. et al . Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response.  Cancer. 1994;  73 1731-1737
  • 38 Yoneyama H, Matsuno K, Zhang Y. et al . Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease.  J Exp Med. 2001;  193 35-49
  • 39 Chen S, Akbar S M, Tanimoto K. et al . Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis.  Cancer Lett. 2000;  148 49-57
  • 40 Ninomiya T, Akbar S M, Masumoto T. et al . Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma.  J Hepatol. 1999;  31 323-331
  • 41 Kakumu S, Ito S, Ishikawa T. et al . Decreased function of peripheral blood dendritic cells in patients with hepatocellular carcinoma with hepatitis B and C virus infection.  J Gastroenterol Hepatol. 2000;  15 431-436
  • 42 Knolle P A, Limmer A. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells.  Trends Immunol. 2001;  22 432-437
  • 43 Abe M, Akbar S M, Horiike N. et al . Induction of cytokine production and proliferation of memory lymphocytes by murine liver dendritic cell progenitors: role of these progenitors as immunogenic resident antigen-presenting cells in the liver.  J Hepatol. 2001;  34 61-67
  • 44 Chuma M, Sakamoto M, Yamazaki K. et al . Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma.  Hepatology. 2003;  37 198-207
  • 45 Chung E J, Sung Y K, Farooq M. et al . Gene expression profile analysis in human hepatocellular carcinoma by cDNA microarray.  Mol Cells. 2002;  14 382-387
  • 46 Dominguez-Malagon H, Gaytan-Graham S. Hepatocellular carcinoma: an update.  Ultrastruct Pathol. 2001;  25 497-516
  • 47 Delpuech O, Trabut J B, Carnot F. et al . Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma.  Oncogene. 2002;  21 2926-2937
  • 48 Li Y, Tang R, Xu H. et al . Discovery and analysis of hepatocellular carcinoma genes using cDNA microarrays.  J Cancer Res Clin Oncol. 2002;  128 369-379
  • 49 Xu X R, Huang J, Xu Z G. et al . Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver.  Proc Natl Acad Sci U S A. 2001;  98 15089-15094
  • 50 Yamashita T, Hashimoto S, Kaneko S. et al . Comprehensive gene expression profile of a normal human liver.  Biochem Biophys Res Commun. 2000;  269 110-116
  • 51 Guo J, Cai M, Wei D. et al . Immune responses of dendritic cells after loaded with cytotoxicity T lymphocyte epitope based peptide of human alpha-fetoprotein (hAFP).  Zhonghua Gan Zang Bing Za Zhi. 2002;  10 178-180
  • 52 Hanke P, Rabe C, Serwe M. et al . Cirrhotic patients with or without hepatocellular carcinoma harbour AFP-specific T-lymphocytes that can be activated in vitro by human alpha-fetoprotein.  Scand J Gastroenterol. 2002;  37 949-955
  • 53 Geissler M, Mohr L, Köhler G. et al . Immunotherapy Directed Against alpha-Fetoprotein Results in Autoimmune Liver Disease During Liver Regeneration in Mice.  Gastroenterology. 2001;  121 931-939
  • 54 Butterfield L H, Koh A, Meng W. et al . Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein.  Cancer Res. 1999;  59 3134-3142
  • 55 Butterfield L H, Meng W S, Koh A. et al . T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein.  J Immunol. 2001;  166 5300-5308
  • 56 Meng W S, Butterfield L H, Ribas A. et al . Fine specificity analysis of an HLA-A2.1-restricted immunodominant T cell epitope derived from human alpha-fetoprotein.  Mol Immunol. 2000;  37 943-950
  • 57 Meng W S, Butterfield L H, Ribas A. et al . alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination.  Cancer Res. 2001;  61 8782-8786
  • 58 Lee W C, Wang H C, Jeng L B. et al . Effective treatment of small murine hepatocellular carcinoma by dendritic cells.  Hepatology. 2001;  34 896-905
  • 59 Homma S, Toda G, Gong J. et al . Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice.  J Gastroenterol. 2001;  36 764-771
  • 60 Vollmer C M Jr, Eilber F C, Butterfield L H. et al . Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma.  Cancer Res. 1999;  59 3064-3067
  • 61 Ladhams A, Schmidt C, Sing G. et al . Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells.  J Gastroenterol Hepatol. 2002;  17 889-896
  • 62 Chan R C, Xie H, Zhao G P. et al . Dendritomas formed by fusion of mature dendritic cells with allogenic human hepatocellular carcinoma cells activate autologous cytotoxic T lymphocytes.  Immunol Lett. 2002;  83 101-109
  • 63 Grimm C F, Ortmann D, Mohr L. et al . Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice.  Gastroenterology. 2000;  119 1104-1112
  • 64 Schlott T, Ahrens K, Ruschenburg I. et al . Different gene expression of MDM2, GAGE-1, -2 and FHIT in hepatocellular carcinoma and focal nodular hyperplasia.  Br J Cancer. 1999;  80 73-78
  • 65 Kobayashi Y, Higashi T, Nouso K. et al . Expression of MAGE, GAGE and BAGE genes in human liver diseases: utility as molecular markers for hepatocellular carcinoma.  J Hepatol. 2000;  32 612-617
  • 66 Chen Y T, Scanlan M J, Sahin U. et al . A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening.  Proc Natl Acad Sci U S A. 1997;  94 1914-1918
  • 67 Mohr L, Schauer J I, Boutin R H. et al . Targeted gene transfer to hepatocellular carcinoma cells in vitro using a novel monoclonal antibody-based gene delivery system.  Hepatology. 1999;  29 82-89
  • 68 Moradpour D, Compagnon B, Wilson B E. et al . Specific targeting of human hepatocellular carcinoma cells by immunoliposomes in vitro.  Hepatology. 1995;  22 1527-1537
  • 69 Tanaka S, Wands J R. Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor beta1-induced apoptosis.  Cancer Res. 1996;  56 3391-3394
  • 70 Nishiyama M, Wands J R. Cloning and increased expression of an insulin receptor substrate-1-like gene in human hepatocellular carcinoma.  Biochem Biophys Res Commun. 1992;  183 280-285
  • 71 Ince N, de la Monte S M, Wands J R. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation.  Cancer Res. 2000;  60 1261-1266
  • 72 Lavaissiere L, Jia S, Nishiyama M. et al . Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma.  J Clin Invest. 1996;  98 1313-1323
  • 73 Bergsland E K. Molecular mechanisms underlying the development of hepatocellular carcinoma.  Semin Oncol. 2001;  28 521-531
  • 74 Covini G, Chan E K, Nishioka M. et al . Immune response to cyclin B1 in hepatocellular carcinoma.  Hepatology. 1997;  25 75-80
  • 75 Yutani S, Shichijo S, Inoue Y. et al . Expression of the SART1 tumor-rejection antigen in hepatocellular carcinomas.  Oncol Rep. 2001;  8 369-372
  • 76 Noguchi K, Enjoji M, Nakamuta M. et al . Expression of a tumor-associated antigen RCAS1 in hepatocellular carcinoma.  Cancer Lett. 2001;  168 197-202
  • 77 Nakashima M, Sonoda K, Watanabe T. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen RCAS1.  Nat Med. 1999;  5 938-942
  • 78 Wang Y, Han K J, Pang X W. et al . Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies.  J Immunol. 2002;  169 1102-1109
  • 79 Chun E, Lee J, Cheong H S. et al . Tumor eradication by hepatitis B virus × antigen-specific CD8(+) T cells in xenografted nude mice.  J Immunol. 2003;  170 1183-1190
  • 80 Steerenberg P A, Geerse E, De Jong W H. et al . Tumour rejection after adoptive transfer of line-10-immune spleen cells is mediated by two T cell subpopulations.  Cancer Immunol Immunother. 1991;  34 103-110
  • 81 Takayama T, Makuuchi M, Sekine T. et al . Distribution and therapeutic effect of intraarterially transferred tumor-infiltrating lymphocytes in hepatic malignancies. A preliminary report.  Cancer. 1991;  68 2391-2396
  • 82 Aruga A, Yamauchi K, Takasaki K. et al . Induction of autologous tumor-specific cytotoxic T cells in patients with liver cancer. Characterizations and clinical utilization.  Int J Cancer. 1991;  49 19-24
  • 83 Onishi S, Saibara T, Fujikawa M. et al . Adoptive immunotherapy with lymphokine-activated killer cells plus recombinant interleukin 2 in patients with unresectable hepatocellular carcinoma.  Hepatology. 1989;  10 349-353
  • 84 Kanai T, Monden M, Takeda T. et al . Adoptive immunotherapy in patients with multiple hepatic cancers using lymphokine activated killer cells (LAK) and interleukin-2.  Gan To Kagaku Ryoho. 1993;  20 1457-1460
  • 85 Wang Y, Chen H, Wu M. et al . Postoperative immunotherapy for patients with hepatocarcinoma using tumor-infiltrating lymphocytes.  Chin Med J (Engl). 1997;  110 114-117
  • 86 Takayama T, Sekine T, Makuuchi M. et al . Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial.  Lancet. 2000;  356 802-807
  • 87 Friedl J, Stift A, Paolini P. et al . Tumor antigen pulsed dendritic cells enhance the cytolytic activity of tumor infiltrating lymphocytes in human hepatocellular cancer.  Cancer Biother Radiopharm. 2000;  15 477-486
  • 88 Ilan Y, Gabay E, Amit G. et al . Suppression of human hepatoma in mice through adoptive transfer of immunity to the hepatitis B surface antigen.  J Hepatol. 1997;  27 170-175
  • 89 Romieu R, Baratin M, Kayibanda M. et al . Passive but not active CD8+ T cell-based immunotherapy interferes with liver tumor progression in a transgenic mouse model.  J Immunol. 1998;  161 5133-5137
  • 90 Siegel J P, Puri R K. Interleukin-2 toxicity.  J Clin Oncol. 1991;  9 694-704
  • 91 Suto T, Fukuda S, Moriya N. et al . Clinical study of biological response modifiers as maintenance therapy for hepatocellular carcinoma.  Cancer Chemother Pharmacol. 1994;  33 Suppl S145-S148
  • 92 Ichida T, Higuchi K, Arakawa K. et al . Treatment of hepatocellular carcinoma utilizing lymphokine-activated killer cells and interleukin-2.  Cancer Chemother Pharmacol. 1989;  23 Suppl S45-S48
  • 93 Uchino J, Une Y, Kawata A. et al . Postoperative chemoimmunotherapy for the treatment of liver cancer.  Semin Surg Oncol. 1993;  9 332-336
  • 94 Sangro B, Qian C, Schmitz V. et al . Gene therapy of hepatocellular carcinoma and gastrointestinal tumors.  Ann N Y Acad Sci. 2002;  963 6-12
  • 95 He P, Tang Z Y, Ye S L. et al . The targeted expression of interleukin-2 in human hepatocellular carcinoma cells.  J Exp Clin Cancer Res. 2000;  19 183-187
  • 96 Huang H, Chen S H, Kosai K. et al . Gene therapy for hepatocellular carcinoma: long-term remission of primary and metastatic tumors in mice by interleukin-2 gene therapy in vivo.  Gene Ther. 1996;  3 980-987
  • 97 Atarashi Y, Yasumura S, Nambu S. et al . A novel human tumor necrosis factor alfa mutein, F4614, inhibits in vitro and in vivo growth of murine and human hepatoma: implication for immunotherapy of human hepatocellular carcinoma.  Hepatology. 1998;  28 57-67
  • 98 Cao G, Kuriyama S, Du P. et al . Complete regression of established murine hepatocellular carcinoma by in vivo tumor necrosis factor alpha gene transfer.  Gastroenterology. 1997;  112 501-510
  • 99 Schmitz V, Barajas M, Wang L. et al . Adenovirus-mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma.  Hepatology. 2001;  34 72-81
  • 100 Li Z, Sui Y, Jiang Y. et al . Reconstruction of SEA-B7.1 double signals on human hepatocellular carcinoma cells and analysis of its immunological effect.  Biochem Biophys Res Commun. 2001;  288 454-461
  • 101 Yamashita Y I, Shimada M, Hasegawa H. et al . Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model.  Cancer Res. 2001;  61 1005-1012
  • 102 Barajas M, Mazzolini G, Genove G. et al . Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12.  Hepatology. 2001;  33 52-61
  • 103 Putzer B M, Stiewe T, Rodicker F. et al . Large nontransplanted hepatocellular carcinoma in woodchucks: treatment with adenovirus-mediated delivery of interleukin 12/B7.1 genes.  J Natl Cancer Inst. 2001;  93 472-479
  • 104 Tatsumi T, Takehara T, Kanto T. et al . B7 - 1 (CD80)-gene transfer combined with interleukin-12 administration elicits protective and therapeutic immunity against mouse hepatocellular carcinoma.  Hepatology. 1999;  30 422-429
  • 105 Wang Z, Qiu S J, Ye S L. et al . Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma.  Cancer Gene Ther. 2001;  8 751-758
  • 106 Andrews K J, Ribas A, Butterfield L H. et al . Adenovirus-interleukin-12-mediated tumor regression in a murine hepatocellular carcinoma model is not dependent on CD1-restricted natural killer T cells.  Cancer Res. 2000;  60 6457-6464
  • 107 Kroger A, Ortmann D, Krohne T U. et al . Growth suppression of the hepatocellular carcinoma cell line Hepa1 - 6 by an activatable interferon regulatory factor-1 in mice.  Cancer Res. 2001;  61 2609-2617
  • 108 Narvaiza I, Mazzolini G, Barajas M. et al . Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy.  J Immunol. 2000;  164 3112-3122
  • 109 Martinet O, Ermekova V, Qiao J Q. et al . Immunomodulatory gene therapy with interleukin 12 and 4 - 1BB ligand: long-term remission of liver metastases in a mouse model.  J Natl Cancer Inst. 2000;  92 931-936
  • 110 Geutskens S B, van der Eb M M, Plomp A C. et al . Recombinant adenoviral vectors have adjuvant activity and stimulate T cell responses against tumor cells.  Gene Ther. 2000;  7 1410-1416
  • 111 Bramson J L, Bodner C A, Graham R W. Activation of host antitumoral responses by cationic lipid/DNA complexes.  Cancer Gene Ther. 2000;  7 353-359
  • 112 Tatsumi T, Takehara T, Kanto T. et al . Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma.  Cancer Res. 2001;  61 7563-7567
  • 113 Cao X, Wang J, Zhang W. et al . Treatment of human hepatocellular carcinoma by fibroblast-mediated human interferon alpha gene therapy in combination with adoptive chemoimmunotherapy.  J Cancer Res Clin Oncol. 1995;  121 457-462
  • 114 Salvadori S, Martinelli G, Zier K. Resection of solid tumors reverses T cell defects and restores protective immunity.  J Immunol. 2000;  164 2214-2220
  • 115 Schueller G, Paolini P, Friedl J. et al . Heat treatment of hepatocellular carcinoma cells: increased levels of heat shock proteins 70 and 90 correlate with cellular necrosis.  Anticancer Res. 2001;  21 295-300
  • 116 Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells.  Nat Med. 1999;  5 1249-1255
  • 117 Shi Y, Zheng W, Rock K L. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses.  Proc Natl Acad Sci U S A. 2000;  97 14590-14595
  • 118 Geissler M, Ali M, Ritter M. et al . Local ablation of hepatocellular carcinoma results in activation of dendritic cells and tumor specific T cell responses.  Hepatology. 2002;  36 696A
  • 119 Boon T, Cerottini J C, van den Eynde B. et al . Tumor antigens recognized by T lymphocytes.  Annu Rev Immunol. 1994;  12 337-365
  • 120 Schultze J L, Vonderheide R H. From cancer genomics to cancer immunotherapy: toward second-generation tumor antigens.  Trends Immunol. 2001;  22 516-523
  • 121 Vonderheide R H, Schultze J L, Anderson K S. et al . Equivalent induction of telomerase-specific cytotoxic T lymphocytes from tumor-bearing patients and healthy individuals.  Cancer Res. 2001;  61 8366-8370

Michael Geissler, M.D.

Department of Medicine II, University Hospital Freiburg

Hugstetter Straße 55

79106 Freiburg

Email: mgeissl@ukl.uni-freiburg.de

    >