Pharmacopsychiatry 2003; 36(6): 292-296
DOI: 10.1055/s-2003-45116
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Effects of Chronic Haloperidol and Clozapine Treatment on AMPA and Kainate Receptor Binding in Rat Brain

A. Schmitt1 , B. May1 , B. Müller1 , A. Jatzko1 , G. Petroianu2 , D. F. Braus1 , F. A. Henn1
  • 1Central Institute of Mental Health, Mannheim, Germany
  • 2Department of Pharmacology, United Arab Emirates University, Al Ain, UAE
Further Information

Publication History

Received: 7.8.2002 Revised: 25.10.2002

Accepted: 14.11.2002

Publication Date:
09 December 2003 (online)

Background: Alterations in AMPA and kainate receptor binding have been revealed in post-mortem schizophrenic brains. As most patients had been treated with antipsychotics, medication effects cannot be excluded as a possible explanation for these results. Methods: Within the framework of this animal study, we investigated [3H]AMPA and [3H]kainate receptor binding in different rat brain regions following 6 months of oral treatment with either haloperidol (1.5 mg/kg/day) or clozapine (45 mg/kg/day). Results: AMPA receptor binding was increased after haloperidol treatment in the striatum, nucleus accumbens, cingulate cortex, and insular cortex. Clozapine showed increased AMPA receptor binding only in the anterior cingulate cortex. Kainate receptor binding was increased by both drugs in all hippocampal subfields. Conclusions: This altered receptor binding may be related to beneficial neuroleptic effects and side effects. Furthermore, neuroleptic therapy may contribute to some of the post-mortem findings in the striatum in schizophrenia.

  • 1 Adler G, Grieshaber S, Faude V, Thebaldi B, Dressing H. Clozapine in patients with chronic schizophrenia: serum level, EEG and memory performance.  Pharmacopsychiatry. 2002;  35 190-194
  • 2 Akaike K, Tanaka S, Tojo H, Fukumoto S, Imamura S, Takigawa M. Kainic acid-induced dorsal and ventral hippocampal seizures in rats.  Brain Res. 2001;  900 65-71
  • 3 Bardgett M E, Jackson J L, Taylor B M, Csernansky J G. The effects of kainic acid lesions on locomotor responses to haloperidol and clozapine.  Psychopharmacology (Berl). 1998;  135 270-278
  • 4 Bortolotto Z A, Clarke V R, Delany C M, Parry M C, Smolders I, Vignes M ,. et al . Kainate receptors are involved in synaptic plasticity.  Nature. 1999;  402 297-301
  • 5 Bottlender R, Jäger M, Groll C, Strauss A, Möller H J. Deficit states in schizophrenia and their association with the length of illness and gender.  Eur Arch Psychiat Clin Neurosci. 2001;  251 272-278
  • 6 Braus D F, Ende G, Weber-Fahr W, Demirakca T, Henn F A. Favorable effect on neuronal viability in the anterior cingulate gyrus due to long-term treatment with atypical antipsychotics: an MRSI study.  Pharmacopsychiatry. 2001;  34 251-253
  • 7 Breese C R, Freedman R, Leonard S S. Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers.  Brain Res. 1995;  674 82-90
  • 8 Carroll R C, Beattie E C, Xia H, Luscher C, Altschuler Y, Nicoll R A,. et al . Dynamin-dependent endocytosis of ionotropic glutamate receptors.  Proc Natl Acad Sci USA. 1999;  96 14 112-14 117
  • 9 Cha J H, Makowiec R L, Penney J B, Young A B. Multiple states of rat brain (RS)-alpha-amino-3-hydroxy-5- methylisoxazole-4-propionic acid receptors as revealed by quantitative autoradiography.  Mol Pharmacol. 1992;  41 832-838
  • 10 Contractor A, Swanson G, Heinemann S F. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus.  Neuron. 2001;  29 209-216
  • 11 Deakin J F, Slater P, Simpson M D, Gilchrist A C, Skan W J, Royston M C,. et al . Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia.  J Neurochem. 1989;  52 1781-1786
  • 12 Eastwood S L, Kerwin R W, Harrison P J. Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5- methyl-4-isoxazole propionate-preferring non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia.  Biol Psychiatr. 1997;  41 636-643
  • 13 Farber N B, Newcomer J W, Olney J W. Glycine agonists: what can they teach us about schizophrenia?.  Arch Gen Psychiat. 1999;  56 13-17
  • 14 Farber N B, Rubin E H, Newcomer J W, Kinscherf D A, Miller J P, Morris J C,. et al . Increased neocortical neurofibrillary tangle density in subjects with alzheimer disease and psychosis.  Arch Gen Psychiat. 2000;  57 1165-1173
  • 15 Fedele E, Raiteri M. Desensitization of AMPA receptors and AMPA-NMDA receptor interaction: an in vivo cyclic GMP microdialysis study in rat cerebellum.  Br J Pharmacol. 1996;  117 1133-1138
  • 16 Fitzgerald L W, Deutch A Y, Gasic G, Heinemann S F, Nestler E J. Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs.  J Neurosci. 1995;  15 2453-2461
  • 17 Freed W J, Dillon-Carter O, Kleinman J E. Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide.  Exp Neurol. 1993;  121 48-56
  • 18 Gao X M, Sakai K, Roberts R C, Conley R R, Dean B, Tamminga C A. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia.  Am J Psychiat. 2000;  157 1141-1149
  • 19 Gunne L M, Andren P E. An animal model for coexisting tardive dyskinesia and tardive parkinsonism: a glutamate hypothesis for tardive dyskinesia.  Clin Neuropharmacol. 1993;  16 90-95
  • 20 Healy D J, Meador-Woodruff J H. Clozapine and haloperidol differentially affect AMPA and kainate receptor subunit mRNA levels in rat cortex and striatum.  Brain Res Mol Brain Res. 1997;  47 331-338
  • 21 Healy D J, Haroutunian V, Powchik P, Davidson M, Davis K L, Watson S J,. et al . AMPA receptor binding and subunit mRNA expression in prefrontal cortex and striatum of elderly schizophrenics.  Neuropsychopharmacology. 1998;  19 278-286
  • 22 Huettner J E. Kainate receptors: knocking out plasticity.  Trends Neurosci. 2001;  24 365-366
  • 23 Javitt D C, Zukin S R. Recent advances in the phencyclidine model of schizophrenia.  Am J Psychiat. 1991;  148 1301-1308
  • 24 Jentsch J D, Roth R H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1999;  20 201-225
  • 25 Kerwin R, Patel S, Meldrum B. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem.  Neuroscience. 1990;  39 25-32
  • 26 Li P, Wilding T J, Kim S J, Calejesan A A, Huettner J E, Zhuo M. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord.  Nature. 1999;  397 161-164
  • 27 Lüscher C, Xia H, Beattie E C, Carroll R C, von Zastrow M, Malenka R C,. et al . Role of AMPA receptor cycling in synaptic transmission and plasticity.  Neuron. 1999;  24 649-658
  • 28 McCoy L, Cox C, Richfield E K. Chronic treatment with typical and atypical antipsychotics increases the AMPA-preferring form of AMPA receptor in rat brain.  Eur J Pharmacol. 1996;  318 41-45
  • 29 McCoy L, Cox C, Richfield E K. Antipsychotic drug regulation of AMPA receptor affinity states and GluR1, GluR2 splice variant expression.  Synapse. 1998;  28 195-207
  • 30 Meador-Woodruff J H, King R E, Damask S P, Bovenkerk K A. Differential regulation of hippocampal AMPA and kainate receptor subunit expression by haloperidol and clozapine.  Mol Psychiat. 1996;  1 41-53
  • 31 Miller D D. Review and management of clozapine side effects.  J Clin Psychiat. 2000;  61 14-17
  • 32 Mobini S, Chiang T J, Ho M Y, Bradshaw C M, Szabadi E. Comparison of the effects of clozapine, haloperidol, chlorpromazine and d-amphetamine on performance on a time-constrained progressive ratio schedule and on locomotor behaviour in the rat.  Psychopharmacology (Berl). 2000;  152 47-54
  • 33 Nishikawa T, Takashima M, Toru M. Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia.  Neurosci Lett. 1983;  40 245-250
  • 34 Noga J T, Hyde T M, Herman M M, Spurney C F, Bigelow L B, Weinberger D R,. et al . Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains.  Synapse. 1997;  27 168-176
  • 35 Olney J W, Farber N B. Glutamate receptor dysfunction and schizophrenia.  Arch Gen Psychiat. 1995;  52 998-1007
  • 36 Ossowska K, Pietraszek M, Wardas J. Further evidence for the subsensitivity of striatal AMPA receptors, induced by chronic haloperidol administration: an autoradiographic study.  Naunyn Schmiedebergs Arch Pharmacol. 1996;  354 384-388
  • 37 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego; Academic Press 1986
  • 38 Petitet F, Blanchard J C, Doble A. Effects of non-NMDA receptor modulators on [3H] dopamine release from rat mesencephalic cells in primary culture.  J Neurochem. 1995;  64 1410-1412
  • 39 Porter R H, Eastwood S L, Harrison P J. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia.  Brain Res. 1997;  751 217-231
  • 40 Sato K, Abe K. An experimental study on the course of trans-synaptic propagation of neural activity and plasticity in the hippocampus in kainate-induced epilepsy.  Brain Res Bull. 2001;  55 393-400
  • 41 See R E, Ellison G. Comparison of chronic administration of haloperidol and the atypical neuroleptics, clozapine and raclopride, in an animal model of tardive dyskinesia.  Eur J Pharmacol. 1990;  181 175-186
  • 42 See R E, Chapman M A. Chronic haloperidol, but not clozapine, produces altered oral movements and increased extracellular glutamate in rats.  Eur J Pharmacol. 1994;  263 269-276
  • 43 See R E, Berglind W J, Krentz L, Meshul C K. Convergent evidence from microdialysis and presynaptic immunolabeling for the regulation of gamma-aminobutyric acid release in the globus pallidus following acute clozapine or haloperidol administration in rats.  J Neurochem. 2002;  82 172-180
  • 44 Smith D O, Lowe D, Temkin R, Jensen P, Hatt H. Dopamine enhances glutamate-activated currents in spinal motoneurons.  J Neurosci. 1995;  15 3905-3912
  • 45 Spurney C F, Baca S M, Murray A M, Jaskiw G E, Kleinman J E, Hyde T M. Differential effects of haloperidol and clozapine on ionotropic glutamate receptors in rats.  Synapse. 1999;  34 266-276
  • 46 Standley S, Tocco G, Wagle N, Baudry M. High- and low-affinity alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA) binding sites represent immature and mature forms of AMPA receptors and are composed of differentially glycosylated subunits.  J Neurochem. 1998;  70 2434-2445
  • 47 Tascedda F, Lovati E, Blom J M, Muzzioli P, Brunello N, Racagni G ,. et al . Regulation of ionotropic glutamate receptors in the rat brain in response to the atypical antipsychotic seroquel (quetiapine fumarate).  Neuropsychopharmacology. 1999;  21 211-217
  • 48 Toru M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Mitsushio H ,. et al . Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients.  Acta Psychiatr Scand. 1988;  78 121-137
  • 49 Toru M, Kurumaji A, Kumashiro S, Suga I, Takashima M, Nishikawa T. Excitatory amino acidergic neurones in chronic schizophrenic brain.  Mol Pharmacol. 1992;  2 241-243
  • 50 Tsai G, Goff D C, Chang R W, Flood J, Baer L, Coyle J T. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia.  Am J Psychiat. 1998;  155 1207-1213
  • 51 Turrigiano G G. AMPA receptors unbound: membrane cycling and synaptic plasticity.  Neuron. 2000;  26 5-8
  • 52 Volavka J, Cooper T, Czobor P, Bitter I, Meisner M, Laska E ,. et al . Haloperidol blood levels and clinical effects.  Arch Gen Psychiat. 1992;  49 354-361
  • 53 Yamamoto B K, Cooperman M A. Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations.  J Neurosci. 1994;  14 4159-4166
  • 54 Zilles K, Schleicher A. Correlative imaging of transmitter receptor distributions in human cortex. In Stumpf WE, Solomon HF, Stumpf WE, Solomon HFStumpf WE, Solomon HFs Autoradiography and correlative imaging. San Diego; Academic Press 1995: p. 277-307
  • 55 Zilles K, Qu M S, Kohling R, Speckmann E J. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography.  Neuroscience. 1999;  94 1051-10
  • 56 Zilles K, Wu J, Crusio W E, Schwegler H. Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains.  Hippocampus. 2000;  10 213-225

Dr. med. Andrea Schmitt

Central Institute of Mental Health

P.O. Box: 12 21 20

D-68072 Mannheim

Germany

Fax: 0049-621-23429

Phone: 0049-621-1703-524

Email: schmitt@zi-mannheim.de