Z Gastroenterol 2005; 43(3): 317-329
DOI: 10.1055/s-2004-813702
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Antiangiogene Therapie gastrointestinaler Tumoren

Anti-angiogenic Therapy for Gastrointestinal TumoursF. Graepler1 , M. Gregor1 , U. M. Lauer1
  • 1Abteilung Innere Medizin I, Medizinische Universitätsklinik, Tübingen
F. Graepler und M. Gregor wurden durch die Deutsche Forschungsgemeinschaft (DFG), Sachbeihilfe G 1838 - 1/2, gefördert. Wir danken Herrn Hannes Schramm, Foto-Repro-Grafik-Abteilung des Universitätsklinikums Tübingen, für die grafische Gestaltung der Abbildungen.
Further Information

Publication History

manuskript received: 14.5.2004

manuscript accepted: 26.9.2004 manuscript accepted in revised version: 28.1.2005

Publication Date:
11 March 2005 (online)

Zusammenfassung

Für die gastroenterologische Onkologie werden auf neuartigen Mechanismen basierende Therapiestrategien benötigt, die insbesondere keine Kreuzresistenzen mit den gegenwärtigen Standardtherapien zeigen. Einen solchen Ansatz stellt die therapeutisch intendierte Antiangiogenese dar, bei der zielgerichtet die Gefäßversorgung solider Tumoren inhibiert wird. Da sich zahlreiche gastrointestinale Tumoren durch eine ausgeprägte Neoangiogenese mit einer daraus resultierenden Hypervaskularisation auszeichnen, werden antiangiogene Therapieansätze künftig eine Schlüsselrolle in der gastroenterologischen Onkologie einnehmen. Entsprechend werden in dieser Übersichtsarbeit (i) grundlegende Mechanismen der Tumorangiogenese, (ii) aktuelle antiangiogene Interventionsansätze auf dem Gebiet der gastroenterologischen Onkologie sowie (iii) gegenwärtige Limitationen und Perspektiven dieser neuartigen Therapiestrategie dargestellt.

Abstract

New therapeutic strategies that notably lack cross resistance with established treatment regimens are much needed in gastroenterological oncology. One such approach is therapeutic anti-angiogenesis which aims at the inhibition of vasculature growth in solid tumours. Since numerous gastrointestinal tumours show strong tumour neoangiogenesis and consequently are highly vascularised, anti-angiogenic therapies will play a pivotal role in tomorrow’s gastroenterological oncology. Hence, this review covers (i) basic mechanisms of tumour angiogenesis, (ii) recent anti-angiogenic strategies in the field of gastroenterological oncology as well as (iii) a discussion of their current limitations and perspectives.

Literatur

  • 1 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 2 Fidler I J, Ellis L M. The implications of angiogenesis for the biology and therapy of cancer metastasis.  Cell. 1994;  79 185-188
  • 3 Folkman J. Role of angiogenesis in tumor growth and metastasis.  Semin Oncol. 2002;  29 15-18
  • 4 Gimbrone M A Jr, Leapman S B, Cotran R S. et al . Tumor dormancy in vivo by prevention of neovascularization.  J Exp Med. 1972;  136 261-276
  • 5 Benjamin L E, Golijanin D, Itin A. et al . Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.  J Clin Invest. 1999;  103 159-165
  • 6 Kerbel R S. Tumor angiogenesis: past, present and the near future.  Carcinogenesis. 2000;  21 505-515
  • 7 St Croix B, Rago C, Velculescu V. et al . Genes expressed in human tumor endothelium.  Science. 2000;  289 1197-1202
  • 8 Cianchi F, Cortesini C, Bechi P. et al . Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer.  Gastroenterology. 2001;  121 1339-1347
  • 9 Li X M, Tang Z Y, Qin L X. et al . Serum vascular endothelial growth factor is a predictor of invasion and metastasis in hepatocellular carcinoma.  J Exp Clin Cancer Res. 1999;  18 511-517
  • 10 Liu D H, Zhang X Y, Fan D M. et al . Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma.  World J Gastroenterol. 2001;  7 500-505
  • 11 Weidner N, Semple J P, Welch W R. et al . Tumor angiogenesis and metastasis - correlation in invasive breast carcinoma.  N Engl J Med. 1991;  324 1-8
  • 12 Frank R E, Saclarides T J, Leurgans S. et al . Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer.  Ann Surg. 1995;  222 695-699
  • 13 Takahashi Y, Kitadai Y, Bucana C D. et al . Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer.  Cancer Res. 1995;  55 3964-3968
  • 14 Takebayashi Y, Aklyama S, Yamada K. et al . Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma.  Cancer. 1996;  78 226-231
  • 15 Tomisaki S, Ohno S, Ichiyoshi Y. et al . Microvessel quantification and its possible relation with liver metastasis in colorectal cancer.  Cancer. 1996;  77 1722-1728
  • 16 Tanigawa N, Amaya H, Matsumura M. et al . Tumor angiogenesis and mode of metastasis in patients with colorectal cancer.  Cancer Res. 1997;  57 1043-1046
  • 17 Choi H J, Hyun M S, Jung G J. et al . Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence.  Oncology. 1998;  55 575-581
  • 18 Fox S H, Whalen G F, Sanders M M. et al . Angiogenesis in normal tissue adjacent to colon cancer.  J Surg Oncol. 1998;  69 230-234
  • 19 Abdalla S A, Behzad F, Bsharah S. et al . Prognostic relevance of microvessel density in colorectal tumours.  Oncol Rep. 1999;  6 839-842
  • 20 Bachtiary B, Selzer E, Knocke T H. et al . Serum VEGF levels in patients undergoing primary radiotherapy for cervical cancer: impact on progression-free survival.  Cancer Lett. 2002;  179 197-203
  • 21 Komuro H, Kaneko S, Kaneko M. et al . Expression of angiogenic factors and tumor progression in human neuroblastoma.  J Cancer Res Clin Oncol. 2001;  127 739-743
  • 22 Wu Y, Saldana L, Chillar R. et al . Plasma vascular endothelial growth factor is useful in assessing progression of breast cancer post surgery and during adjuvant treatment.  Int J Oncol. 2002;  20 509-516
  • 23 Poon R T, Ng I O, Lau C. et al . Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study.  Ann Surg. 2001;  233 227-235
  • 24 Boehm T, Folkman J, Browder T. et al . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.  Nature. 1997;  390 404-407
  • 25 Marmé D. The impact of anti-angiogenic agents on cancer therapy.  J Cancer Res Clin Oncol. 2003;  129 607-620
  • 26 Shalaby F, Rossant J, Yamaguchi T P. et al . Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.  Nature. 1995;  376 62-66
  • 27 Nissen N N, Polverini P J, Koch A E. et al . Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing.  Am J Pathol. 1998;  152 1445-1452
  • 28 Tonnesen M G, Feng X, Clark R A. Angiogenesis in wound healing.  J Investig Dermatol Symp Proc. 2000;  5 40-46
  • 29 Ross M A, Sander C M, Kleeb T B. et al . Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver.  Hepatology. 2001;  34 1135-1148
  • 30 Shimizu H, Miyazaki M, Wakabayashi Y. et al . Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats.  J Hepatol. 2001;  34 683-689
  • 31 Karuri A R, Kumar A M, Mukhopadhyay D. Differential expression and selective localization of vascular permeability factor/vascular endothelial growth factor in the rat uterus during the estrous cycle.  J Endocrinol. 1998;  159 489-499
  • 32 Krüssel J S, Casan E M, Raga F. et al . Expression of mRNA for vascular endothelial growth factor transmembraneous receptors Flt1 and KDR, and the soluble receptor sflt in cycling human endometrium.  Mol Hum Reprod. 1999;  5 452-458
  • 33 Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications.  Semin Oncol. 2002;  29 10-14
  • 34 von Marschall Z, Cramer T, Hocker M. et al . Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma.  Gut. 2001;  48 87-96
  • 35 Arbiser J L, Moses M A, Fernandez C A. et al . Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways.  Proc Natl Acad Sci U S A. 1997;  94 861-866
  • 36 Petit A M, Rak J, Hung M C. et al . Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.  Am J Pathol. 1997;  151 1523-1530
  • 37 Okada F, Rak J W, St C roix B. et al . Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells.  Proc Natl Acad Sci U S A. 1998;  95 3609-3614
  • 38 Niklinska W, Burzykowski T, Chyczewski L. et al . Expression of vascular endothelial growth factor (VEGF) in non-small cell lung cancer (NSCLC): association with p53 gene mutation and prognosis.  Lung Cancer. 2001;  34 (Suppl 2) S59-64
  • 39 Yuan A, Yu C J, Luh K T. et al . Aberrant p53 expression correlates with expression of vascular endothelial growth factor mRNA and interleukin-8 mRNA and neoangiogenesis in non-small-cell lung cancer.  J Clin Oncol. 2002;  20 900-910
  • 40 Presta L G, Chen H, O’Connor S J. et al . Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders.  Cancer Res. 1997;  57 4593-4599
  • 41 Kabbinavar F, Hurwitz H I, Fehrenbacher L. et al . Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer.  J Clin Oncol. 2003;  21 60-65
  • 42 Hurwitz H, Fehrenbacher L, Novotny W. et al . Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer.  N Engl J Med. 2004;  350 2335-2342
  • 43 Shen B Q, Lee D Y, Zioncheck T F. Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway.  J Biol Chem. 1999;  274 33 057-33 063
  • 44 Ostendorf T, Kunter U, Eitner F. et al . VEGF(165) mediates glomerular endothelial repair.  J Clin Invest. 1999;  104 913-923
  • 45 Sugimoto H, Hamano Y, Charytan D. et al . Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria.  J Biol Chem. 2003;  278 12 605-12 608
  • 46 Giantonio B J, Levy D, O’Dwyer P J. et al .Bevacizumab (anti-VEGF) plus IFL (irinotecan, fluorouracil, leucovorin) as front-line therapy for advanced colorectal cancer (advCRC): Updated results from the Eastern Cooperative Oncology Group (ECOG) Study E2200. ASCO Gastrointestinal Cancers Symposium 2004, Abstr. 289, http://www.asco.org/ac/1,1003,_12-002643-00_18-0027-00_19-00507,00.asp. 
  • 47 Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin.  J Clin Oncol. 2003;  21 3542
  • 48 Giantonio B J, Catalano P J, Meropol N J. et al .The addition of bevacizumab (anti-VEGF) to FOLFOX4 in previously treated advanced colorectal cancer (advCRC): An updated interim toxicity analysis of the Eastern Cooperative Oncology Group (ECOG) study E3200. ASCO Gastrointestinal Cancers Symposium 2004, Abstr. 241, http://www.asco.org/ac/1,1003,_12-002643-00_18-0027-00_19-00554,00.asp. 
  • 49 Jones M K, Kawanaka H, Baatar D. et al . Gene therapy for gastric ulcers with single local injection of naked DNA encoding VEGF and angiopoietin-1.  Gastroenterology. 2001;  121 1040-1047
  • 50 Economides A N, Carpenter L R, Rudge J S. et al . Cytokine traps: multi-component, high-affinity blockers of cytokine action.  Nat Med. 2003;  9 47-52
  • 51 Holash J, Davis S, Papadopoulos N. et al . VEGF-Trap: a VEGF blocker with potent antitumor effects.  Proc Natl Acad Sci U S A. 2002;  99 11 393-11 398
  • 52 Byrne A T, Ross L, Holash J. et al . Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model.  Clin Cancer Res. 2003;  9 5721-5728
  • 53 Huang J, Frischer J S, Serur A. et al . Regression of established tumors and metastases by potent vascular endothelial growth factor blockade.  Proc Natl Acad Sci U S A. 2003;  100 7785-7790
  • 54 Kim E S, Serur A, Huang J. et al . Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma.  Proc Natl Acad Sci U S A. 2002;  99 11 399-11 404
  • 55 Wood J M, Bold G, Buchdunger E. et al . PTK787/ZK 222 584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration.  Cancer Res. 2000;  60 2178-2189
  • 56 Drevs J, Mross K, Fuxius S. et al .A phase-1 dose-escalating and pharmacokinetic (PK) study of the VEGF-receptor-inhibitor PTK787/ZK222584 (PTK/ZK) in patients with liver metastasis of advanced cancer. ASCO Annual Meeting 2001, Proc ASCO 2001;20:398. http://www.asco.org/ac/1,1003,_12-002643-00_18-0010-00_19-00398,00.asp. 
  • 57 George D, Jonasch E, Hart L. et al . A phase I, dose-escalating and pharmacokinetic (PK) study of the VEGF-receptor inhibitor PTK787/ZK 222 584 (PTK/ZK) in patients with advanced renal cell or prostate carcinomas.  Proc AACR. 2002;  43 548
  • 58 Morgan B, Thomas A L, Drevs J. et al . Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222 584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies.  J Clin Oncol. 2003;  21 3955-3964
  • 59 O’Reilly M S, Holmgren L, Shing Y. et al . Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.  Cell. 1994;  79 315-328
  • 60 O’Reilly M S, Boehm T, Shing Y. et al . Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.  Cell. 1997;  88 277-285
  • 61 Bagavandoss P, Wilks J W. Specific inhibition of endothelial cell proliferation by thrombospondin.  Biochem Biophys Res Commun. 1990;  170 867-872
  • 62 Armstrong L C, Bornstein P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis.  Matrix Biol. 2003;  22 63-71
  • 63 Holmgren L, O’Reilly M S, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression.  Nat Med. 1995;  1 149-153
  • 64 Folkman J, Kalluri R. Cancer without disease.  Nature. 2004;  427 787
  • 65 Dhar D K, Ono T, Yamanoi A. et al . Serum endostatin predicts tumor vascularity in hepatocellular carcinoma.  Cancer. 2002;  95 2188-2195
  • 66 Musso O, Rehn M, Theret N. et al . Tumor progression is associated with a significant decrease in the expression of the endostatin precursor collagen XVIII in human hepatocellular carcinomas.  Cancer Res. 2001;  61 45-49
  • 67 Ferreras M, Felbor U, Lenhard T. et al . Generation and degradation of human endostatin proteins by various proteinases.  FEBS Lett. 2000;  486 247-251
  • 68 Schuppan D, Cramer T, Bauer M. et al . Hepatocytes as a source of collagen type XVIII endostatin.  Lancet. 1998;  352 879-880
  • 69 Mundhenke C, Thomas J P, Wilding G. et al . Tissue examination to monitor antiangiogenic therapy: a phase I clinical trial with endostatin.  Clin Cancer Res. 2001;  7 3366-3374
  • 70 Herbst R S, Hess K R, Tran H T. et al . Phase I study of recombinant human endostatin in patients with advanced solid tumors.  J Clin Oncol. 2002;  20 3792-3803
  • 71 Eder J P Jr, Supko J G, Clark J W. et al . Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily.  J Clin Oncol. 2002;  20 3772-3784
  • 72 Thomas J P, Arzoomanian R Z, Alberti D. et al . Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors.  J Clin Oncol. 2003;  21 223-231
  • 73 Kulke M, Bergsland E, Ryan D P. et al .A phase II, open-label, safety, pharmacokinetic, and efficacy study of recombinant human endostatin in patients with advanced neuroendocrine tumors. ASCO Annual Meeting 2003, Abstr. 958, Proc Am Soc Clin Oncol. 2003;22:239. http://www.asco.org/ac/1,1003,_12-002643-00_18-0023-00_19-00103748,00.asp. 
  • 74 Davis D W, Shen Y, Mullani N A. et al . Quantitative analysis of biomarkers defines an optimal biological dose for recombinant human endostatin in primary human tumors.  Clin Cancer Res. 2004;  10 33-42
  • 75 Gately S, Li W W. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy.  Semin Oncol. 2004;  31 2-11
  • 76 Scavelli C, Vacca A, Di Pietro G. et al . Crosstalk between angiogenesis and lymphangiogenesis in tumor progression.  Leukemia. 2004;  18 1054-1058
  • 77 Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis.  Physiol Rev. 2002;  82 673-700
  • 78 Kitadai Y, Onogawa S, Kuwai T. et al . Angiogenic switch occurs during the precancerous stage of human esophageal squamous cell carcinoma.  Oncol Rep. 2004;  11 315-319
  • 79 Patel T, Roychowdhury D, Chadalavada R. Angiogenesis in Esophageal Cancer. ASCO Annual Meeting 1999, Abstr. 2373, http://www.asco.org/ac/1,1003,_12-002643-00_18-0017-00_19-0016620,00.asp. 
  • 80 Millikan K W, Mall J W, Myers J A. et al . Do angiogenesis and growth factor expression predict prognosis of esophageal cancer?.  Am Surg. 2000;  66 401-405
  • 81 Du J R, Jiang Y, Zhang Y M. et al . Vascular endothelial growth factor and microvascular density in esophageal and gastric carcinomas.  World J Gastroenterol. 2003;  9 1604-1606
  • 82 Wallner G, Ciechanski A, Dabrowski A. et al . Vascular endothelial growth factor and basic fibroblast growth factor in patients with squamous cell oesophageal cancer.  Folia Histochem Cytobiol. 2001;  39 Suppl 2 122-123
  • 83 Uchida S, Shimada Y, Watanabe G. et al . In oesophageal squamous cell carcinoma vascular endothelial growth factor is associated with p53 mutation, advanced stage and poor prognosis.  Br J Cancer. 1998;  77 1704-1709
  • 84 Ogata Y, Fujita H, Yamana H. et al . Expression of vascular endothelial growth factor as a prognostic factor in node-positive squamous cell carcinoma in the thoracic esophagus: long-term follow-up study.  World J Surg. 2003;  27 584-589
  • 85 McDonnell C O, Harmey J H, Bouchier-Hayes D J. et al . Effect of multimodality therapy on circulating vascular endothelial growth factor levels in patients with oesophageal cancer.  Br J Surg. 2001;  88 1105-1109
  • 86 McDonnell C O, Bouchier-Hayes D J, Toomey D. et al . Effect of neoadjuvant chemoradiotherapy on angiogenesis in oesophageal cancer.  Br J Surg. 2003;  90 1373-1378
  • 87 Shimada H, Hoshino T, Okazumi S. et al . Expression of angiogenic factors predicts response to chemoradiotherapy and prognosis of oesophageal squamous cell carcinoma.  Br J Cancer. 2002;  86 552-557
  • 88 Auvinen M I, Sihvo E I, Ruohtula T. et al . Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma.  J Clin Oncol. 2002;  20 2971-2979
  • 89 Couvelard A, Paraf F, Gratio V. et al . Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression.  J Pathol. 2000;  192 14-18
  • 90 Sihvo E I, Ruohtula T, Auvinen M I. et al . Simultaneous progression of oxidative stress and angiogenesis in malignant transformation of Barrett esophagus.  J Thorac Cardiovasc Surg. 2003;  126 1952-1957
  • 91 Morales C P, Souza R F, Spechler S J. Hallmarks of cancer progression in Barrett’s oesophagus.  Lancet. 2002;  360 1587-1589
  • 92 Kotoh T, Dhar D K, Masunaga R. et al . Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice.  Surgery. 1999;  125 536-544
  • 93 Kakeji Y, Koga T, Sumiyoshi Y. et al . Clinical significance of vascular endothelial growth factor expression in gastric cancer.  J Exp Clin Cancer Res. 2002;  21 125-129
  • 94 Tanigawa N, Amaya H, Matsumura M. et al . Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinomas.  Cancer Res. 1996;  56 2671-2676
  • 95 Saito H, Tsujitani S, Kondo A. et al . Combined analysis of tumour neoangiogenesis and local immune response in advanced gastric carcinoma.  Oncol Rep. 1999;  6 459-463
  • 96 Elpek G O, Gelen T, Aksoy N H. et al . Microvessel count, proliferating cell nuclear antigen and Ki-67 indices in gastric adenocarcinoma.  Pathol Oncol Res. 2000;  6 59-64
  • 97 Erenoglu C, Akin M L, Uluutku H. et al . Angiogenesis predicts poor prognosis in gastric carcinoma.  Dig Surg. 2000;  17 581-586
  • 98 Saito H, Tsujitani S. Angiogenesis, angiogenic factor expression and prognosis of gastric carcinoma.  Anticancer Res. 2001;  21 4365-4372
  • 99 Ichikura T, Tomimatsu S, Ohkura E. et al . Prognostic significance of the expression of vascular endothelial growth factor (VEGF) and VEGF-C in gastric carcinoma.  J Surg Oncol. 2001;  78 132-137
  • 100 Kido S, Kitadai Y, Hattori N. et al . Interleukin 8 and vascular endothelial growth factor - prognostic factors in human gastric carcinomas?.  Eur J Cancer. 2001;  37 1482-1487
  • 101 Kitadai Y, Sasaki A, Ito M. et al . Helicobacter pylori infection influences expression of genes related to angiogenesis and invasion in human gastric carcinoma cells.  Biochem Biophys Res Commun. 2003;  311 809-814
  • 102 Zhong H, De Marzo A M, Laughner E. et al . Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases.  Cancer Res. 1999;  59 5830-5835
  • 103 Shi Y H, Fang W G. Hypoxia-inducible factor-1 in tumour angiogenesis.  World J Gastroenterol. 2004;  10 1082-1087
  • 104 Chun Y S, Yeo E J, Choi E. et al . Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells.  Biochem Pharmacol. 2001;  61 947-954
  • 105 Yeo E J, Chun Y S, Cho Y S. et al . YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1.  J Natl Cancer Inst. 2003;  95 516-525
  • 106 Kanai T, Konno H, Tanaka T. et al . Anti-tumor and anti-metastatic effects of human-vascular-endothelial-growth-factor-neutralizing antibody on human colon and gastric carcinoma xenotransplanted orthotopically into nude mice.  Int J Cancer. 1998;  77 933-936
  • 107 Kamiya K, Konno H, Tanaka T. et al . Antitumor effect on human gastric cancer and induction of apoptosis by vascular endothelial growth factor neutralizing antibody.  Jpn J Cancer Res. 1999;  90 794-800
  • 108 Matsumoto K, Konno H, Tanaka T. et al . Combination therapy with vascular endothelial growth factor neutralizing antibody and mitomycin C on human gastric cancer xenograft.  Jpn J Cancer Res. 2000;  91 748-752
  • 109 Kitada T, Seki S, Sakaguchi H. et al . Clinicopathological significance of hypoxia-inducible factor-1alpha expression in human pancreatic carcinoma.  Histopathology. 2003;  43 550-555
  • 110 Onizuka S, Kawakami S, Taniguchi K. et al . Pancreatic carcinogenesis: apoptosis and angiogenesis.  Pancreas. 2004;  28 317-319
  • 111 Kisker O, Onizuka S, Banyard J. et al . Generation of multiple angiogenesis inhibitors by human pancreatic cancer.  Cancer Res. 2001;  61 7298-7304
  • 112 Kisker O, Onizuka S, Becker C M. et al . Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice.  Neoplasia. 2003;  5 32-40
  • 113 Buchler P, Reber H A, Ullrich A. et al . Pancreatic cancer growth is inhibited by blockade of VEGF-RII.  Surgery. 2003;  134 772-782
  • 114 Dobrzanski P, Hunter K, Jones-Bolin S. et al . Antiangiogenic and Antitumor Efficacy of EphA2 Receptor Antagonist.  Cancer Res. 2004;  64 910-919
  • 115 Yoshiji H, Kuriyama S, Yoshii J. et al . Vascular endothelial growth factor tightly regulates in vivo development of murine hepatocellular carcinoma cells.  Hepatology. 1998;  28 1489-1496
  • 116 Park Y N, Kim Y B, Yang K M. et al . Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis.  Arch Pathol Lab Med. 2000;  124 1061-1065
  • 117 Ng I O, Poon R T, Lee J M. et al . Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma.  Am J Clin Pathol. 2001;  116 838-845
  • 118 El-Assal O N, Yamanoi A, Soda Y. et al . Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver.  Hepatology. 1998;  27 1554-1562
  • 119 Sun F X, Tang Z Y, Lui K D. et al . Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues.  Int J Cancer. 1996;  66 239-243
  • 120 Graepler F, Verbeek B, Graeter T. et al .Combined antiangiogenic gene therapy with soluble VEGF receptor 1 (sFlt-1) and endostatin is highly effective in a rat model of HCC. Submitted. 
  • 121 Boedefeld W M II, Bland K I, Heslin M J. Recent Insights Into Angiogenesis, Apoptosis, Invasion, and Metastasis in Colorectal Carcinoma.  Ann Surg Oncol. 2003;  10 839-851
  • 122 Simon R, Freidlin B, Rubinstein L. et al . Accelerated titration designs for phase I clinical trials in oncology.  J Natl Cancer Inst. 1997;  89 1138-1147
  • 123 Brower V. Evidence of efficacy: researchers investigating markers for angiogenesis inhibitors.  J Natl Cancer Inst. 2003;  95 1425-1427
  • 124 Xie W, McCahon P, Jakobsen K. et al . Evaluation of the ability of digital infrared imaging to detect vascular changes in experimental animal tumours.  Int J Cancer. 2004;  108 790-794
  • 125 Pahernik S, Harris A G, Schmitt-Sody M. et al . Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: a validation study.  Br J Cancer. 2002;  86 1622-1627
  • 126 Herbst R S, Mullani N A, Davis D W. et al . Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin.  J Clin Oncol. 2002;  20 3804-3814
  • 127 Mancuso P, Calleri A, Cassi C. et al . Circulating endothelial cells as a novel marker of angiogenesis.  Adv Exp Med Biol. 2003;  522 83-97
  • 128 Berger A C, Feldman A L, Gnant M F. et al . The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing.  J Surg Res. 2000;  91 26-31
  • 129 Abulafia O, Sherer D M. Angiogenesis of the endometrium.  Obstet Gynecol. 1999;  94 148-153
  • 130 Ryan A M, Eppler D B, Hagler K E. et al . Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody.  Toxicol Pathol. 1999;  27 78-86
  • 131 Hull M L, Charnock-Jones D S, Chan C LK. et al . Antiangiogenic agents are effective inhibitors of endometriosis.  J Clin Endocrinol Metab. 2003;  88 2889-2899
  • 132 Nap A W, Griffioen A W, Dunselman G AJ. et al . Antiangiogenesis therapy for endometriosis.  J Clin Endocrinol Metab. 2004;  89 1089-1095
  • 133 Kerbel R S, Yu J, Tran J. et al . Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches.  Cancer Metastasis Rev. 2001;  20 79-86
  • 134 Yokoyama Y, Dhanabal M, Griffioen A W. et al . Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth.  Cancer Res. 2000;  60 2190-2196
  • 135 Scappaticci F A, Smith R, Pathak A. et al . Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice.  Mol Ther. 2001;  3 186-196
  • 136 Scappaticci F A, Contreras A, Smith R. et al . Statin-AE: a novel angiostatin-endostatin fusion protein with enhanced antiangiogenic and antitumor activity.  Angiogenesis. 2001;  4 263-268
  • 137 Bergers G, Javaherian K, Lo K M. et al . Effects of angiogenesis inhibitors on multistage carcinogenesis in mice.  Science. 1999;  284 808-812
  • 138 Hood J D, Cheresh D A. Building a better Trap.  Proc Natl Acad Sci U S A. 2003;  100 8624-8625
  • 139 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.  Cell. 1996;  86 353-364
  • 140 Zorick T S, Mustacchi Z, Bando S Y. et al . High serum endostatin levels in Down syndrome: implications for improved treatment and prevention of solid tumours.  Eur J Hum Genet. 2001;  9 811-814
  • 141 Kerbel R S. Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results.  J Clin Oncol. 2001;  19 45S-51S

1 http://www.boerse-online.de/v4/aktien/usa_asien/art/ac/262773.html

2 http://clinicaltrials.gov/ct/search?term=bevacizumab&submit=Search (NIH)

3 http://www.ecog.org/general/active_prot.html (ECOG)

4 http://www.eortc.be/protoc/ (EORTC)

5 http://www.studien.de/

6 http://www.regeneron.com/company/tarrytown.asp (Fa. Regeneron)

7 http://www.schering.de/scripts/de/30_rd/pipe/onco/conf12.php (Fa. Schering)

Dr. med. Florian Graepler

Abteilung Innere Medizin I, Medizinische Universitätsklinik, Universitätsklinikum Tübingen

Otfried-Müller-Straße 10

72076 Tübingen

Phone: ++ 49/70 71/2 98 06 51

Fax: ++ 49/70 71/29 46 30

Email: florian.graepler@uni-tuebingen.de

    >