Horm Metab Res 2004; 36(3): 148-154
DOI: 10.1055/s-2004-814338
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Streptozotocin-induced Alterations in Rat Liver Golgi Complexes are Ameliorated by BMOV [Bis(maltolato)oxovanadium(IV)] Activity

A.  M.  Kordowiak1 , D.  Dziga2 , W.  Dabroś3
  • 1Department of General Biochemistry Faculty of Biotechnology
  • 2Department of Plant Physiology and Development, Faculty of Biotechnology, Jagiellonian University, Krakow
  • 3Department of Clinical and Experimental Pathomorphology, Medical Faculty, Collegium Medicum, Krakow, Poland
Further Information

Publication History

Received 16 June 2003

Accepted after revision 19 September 2003

Publication Date:
01 April 2004 (online)

Abstract

Twenty years ago, we detected the interdependence between structure and function of rat liver Golgi complexes that are characteristic for streptozotocin diabetes, which served us in further investigations as a useful indicator of the effectiveness of drugs we were testing. This work presented results obtained in eight groups of rats (four control and four diabetic) that were administered orally either bis(maltolato)oxovanadium(IV) [BMOV] or maltol alone. The activities of the rat liver Golgi marker enzyme, galactosyltransferase [GalT], as well as the morphology of Golgi complexes were studied in situ using an electron microscope; parallel estimations of vanadium concentration and phospholipid percentage were made in Golgi-rich preparations isolated from the liver. Our main findings were normalization in diabetic animals orally treated with 1.8 mmol BMOV in 0.09 mol NaCl solutions over seven days, which demonstrated an accompanying increase in phosphatidic acid (PA) percentage (p < 0.05) compared to controls. In the diabetic groups, Pearson’s test showed a positive double correlation between GalT activity, vanadium concentration, and PA percentage in Golgi-rich membrane preparations from the liver. Additionally, a negative correlation was found between vanadium concentration and phosphatidylcholine percentage in the fractions.

References

  • 1 Heyliger C E, Tahiliani A G, McNeill J H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats.  Science. 1985;  227 1474-1477
  • 2 Reul B A, Amin S S, Buchet J P, Ongemba L N, Crans D C, Brichard S M. Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats.  Brit J Pharmacol. 1999;  126 467-477
  • 3 Domingo J L. Vanadium and diabetes. What about vanadium toxicity?.  Mol Cell Biochem. 2000;  203 185-187
  • 4 Poucheret P, Verma S, Grynpas M D, McNeill J H. Vanadium and diabetes.  Mol Cell Biochem. 1998;  188 73-80
  • 5 Cam M C, Brownsey R W, McNeill J H. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent.  Can J Physiol Pharmacol. 2000;  78 829-847
  • 6 Crans D C. Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds.  J Inorg Biochem. 2000;  80 123-131
  • 7 Tsiani E, Fantus I G. Vanadium compounds. Biological actions and potential as pharmacological agents.  Trends Endocrinol Metab. 1997;  8 51-58
  • 8 Aharon Y, Mevorach M, Shamoon H. Vanadyl sulfate does not enhance insulin action in patients with type 1 diabetes.  Diabetes Care. 1998;  21 2194-2195
  • 9 Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes.  J Alternat Complement Med. 1999;  5 273-291
  • 10 Goldfine A B, Patti M E, Zuberi L, Goldstein B J, LeBlanc R, Landaker E J, Jiang Z Y, Willsky G R, Kahn C R. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies.  Metabolism. 2000;  49 400-410
  • 11 Kaczmarski F, Kordowiak A, Sarnecka-Keller M. Influence of insulin on galactosyltransferase activity and morphology of the rat liver Golgi apparatus in control and streptozotocin-diabetic rats.  Path Res Pract. 1981;  172 130-137
  • 12 Kordowiak A, Turyna B, Kaczmarski F, Sarnecka-Keller M. Comparison of rat plasma glycoprotein composition with biochemical activity and morphology of liver Golgi apparatus in streptozotocin-diabetes treated with insulin.  Folia Histochem Cytochem. 1981;  19 181-188
  • 13 Kordowiak A. The phospholipid and cholesterol contents of Golgi-rich membrane fraction from streptozotocin- or alloxan-diabetic rats and 6 h after streptozotocin rat livers.  Bull Acad Pol Sci. 1984;  32 165-171
  • 14 Kordowiak A M. Cytoprotective effect of 16,16’dimethylprostaglandin E2 (dmPGE2) on streptozotocin-induced biochemical alterations of Golgi-rich membrane fraction in comparison with morphology of rat liver Golgi apparatus in situ.  Path Res Pract. 1986;  181 397-402
  • 15 Kordowiak A M. The phospholipid contents in rat liver Golgi-rich membrane fractions after streptozotocin and/or prostaglandin treatment.  Folia Histochem Cytobiol. 1986;  24 39-46
  • 16 Kordowiak A M, Polanski M, Dabros W. Influence of LEPK on biochemical activity and morphology in situ of liver Golgi apparatus from control and streptozotocin-diabetic rats.  Pol J Pathol. 1997;  48 87-93
  • 17 DažbrosŽ W, Kordowiak A M, Dziga D, GrybosŽ R. Influence of bis(maltolato) oxovanadium(IV) on activity of galactosyltransferase (GalT) and morphology of rat liver Golgi apparatus in control and streptozotocin diabetes.  Pol J Pathol. 1998;  49 67-76
  • 18 DažbrosŽ W, Dziga D, Grybos R, Kordowiak A M. Biochemical and morphological alterations in rat liver Golgi complexes after treatment with bis(maltolato)oxovanadium(IV) [BMOV] or maltol alone.  Path Res Pract. 2000;  196 561-568
  • 19 DažbrosŽ W, Dziga D, Kordowiak A M. The influence of BMOV[bis(maltolato)oxovanadium(IV)] on biochemical and morphological alterations, characteristic for streptozotocin-diabetic rat liver Golgi complexes.  Pol J Pathol. 2002;  53 205-213
  • 20 Kordowiak A M, Nikiforuk A, DažbrosŽ W. Biochemical and morphological study of rat liver Golgi complex in streptozotocin-diabetic and control rats treated with bis(kojato)oxovanadium(IV) [VO(ka)2]x2H2O. Part I. One-week treatment with vanadium compound.  Pol J Pathol. 2000;  1 9-16
  • 21 Kordowiak A M, Trzos R, Grybos R. Insulin-like effects on liver Golgi membrane preparations of bis(oxalato)oxovanadate(IV) complex ion, a new vanadium compound.  Horm Metab Res. 1997;  29 104-108
  • 22 Kordowiak A M, Dudek B, Grybos R. Influence of sodium(oxalato)oxovanadium(IV) on phospholipids in liver Golgi fractions from control and streptozotocin-diabetic rats.  Comp Biochem Physiol Part C. 2000;  125 11-16
  • 23 Kordowiak A M, DažbrosŽ W, Kajda B. The influence of a new vanadium compound, bis(2,2'-bipyridine)oxovanadium(IV) sulphate on liver Golgi complexes from control and streptozotocin-diabetic rats.  Horm Metab Res. 2002;  34 1-5
  • 24 Yuen V G, Caravan P, Gelmini L, Glover N, McNeill J H, Setyawati I A, Zhou R, Orvig C. Glucose lowering properties of vanadium compounds. Comparison of coordination complexes with maltol or kojic acid as ligands.  J Inorg Biochem. 1997;  68 108-116
  • 25 Fleischer B. Isolation and characterisation of Golgi apparatus from rat liver. In: Fleischer S, Packer L. (eds) Methods in Enzymology Vol 31A. New York; Acad Press Inc 1974: 180-191
  • 26 Lowry O H, Rosebrough N J, Farr A-L, Randall R-J. Protein measurement with Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 27 Somogyi M J, Nelson N. Determination of reducing sugars and carbohydrates. In: Whistler R, Wolprom R. (eds) Methods in Carbohydrate Chemistry vol 1. New York, London; Acad Press Inc 1962: 380-394
  • 28 Kates M. Techniques of lipidology. Isolation, analysis and identification of lipids. In: Work TS, Work E (eds) Laboratory Techniques in Biochemistry and Molecular Biology vol.3 New York; Elsevier 1972: 267-502
  • 29 Vaskovsky V E, Kostetsky E Y, Vasendin I M. A universal reagent for phospholipid analysis.  J Chromatogr. 1975;  114 129-141
  • 30 Karnovsky M J. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.  J Cell Biol. 1965;  27 137A-138A
  • 31 Venable J H, Coggeshall R A. Simplified lead citrate stain for use in electron microscopy.  J Cell Biol. 1965;  25 407-408
  • 32 Marzban L, Bhanot S, McNeill J H. In vivo effects of insulin and bis(maltolato)oxovanadium(IV) in PKB activity in the skeletal muscle and liver of diabetic rats.  Mol Cell Biochem. 2001;  223 147-157
  • 33 Wang J, Yuen V G, McNeill J H. Effect of vanadium on insulin sensitivity and appetite.  Metabolism. 2001;  50 667-673
  • 34 Cam M C, Brownsey R W, Rodrigues B, McNeill J H. Lack of in vivo effect of vanadium on GLUT4 translocation in white adipose tissue of streptozotocin-diabetic rats.  Metabolism. 2001;  50 674-680
  • 35 Sasagawa T, Yoshikawa Y, Kawabe K, Sakurai H, Kojima Y. Bis(6-ethylpicolinato)oxovanadium(IV) complex with normoglycemic activity in KK-Ay mice.  J Inorg Biochem. 2002;  88 108-112
  • 36 Semiz S, Orvig C, McNeill J H. Effects of diabetes, vanadium and insulin on glycogen synthase activation in Wistar rats.  Mol Cell Biochem. 2002;  231 23-35
  • 37 Mohammad A, Wang J, McNeill J H. Bis(maltolato)oxovanadium(IV) inhibit the activity of PTP1B in Zucker rat skeletal muscle in vivo. .  Mol Cell Biochem. 2002;  229 125-128
  • 38 Mohammad A, Bhanot S. McNeill JH. In vivo effects of vanadium in diabetic rats are in dependent of changes in PI-3 kinase activity in skeletal muscle.  Mol Cell Biochem. 2001;  223 103-108
  • 39 Thompson K H, Tsakuda Y, Xu Z, Battell M, McNeill J H, Orvig C. Influence of chelation and oxidation state on vanadium bioavailability anf their effects on tissue concentrations of zinc, cooper and iron.  Biological Trace Element Research. 2002;  86 31-44 Humana Press Inc.
  • 40 Rehder D, Pessoa J C, Geraldes C FGC, Castromm C A, Kabanos T, Kiss T, Meier B, Micera G, Petterson L, Rangel M, Salifoglou A, Turel I, Wand D. In vitro study of the insulin-mimetic behaviour of vanadium(IV,V) coordination compounds.  J Biol Inorg Chem. 2002;  7 384-396
  • 41 Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil.  Diabetes Metab Res Rev. 2001;  17 55-66
  • 42 Woo L CY, Yuen V G, Thompson K H. Vanadyl-biquanide complexes as potential synergistic insulin mimics.  J Inorg Biochem. 1999;  76 251-257
  • 43 Kordowiak A, Sarnecka-Keller M. The protein patterns of Golgi-rich membrane preparations from the livers of control, insulin treated and streptozotocin diabetic rats.  Bull Acad Pol Sci. 1977;  25 205-209
  • 44 Roth M G, Bi K, Ktistakis N T, Yu S. Phospholipase D as an effector for ADP-ribosylation factor in the regulation of vesicular traffic.  Chem Phys Lipids. 1999;  98 141-152
  • 45 De Camili P, Emr S D, McPherson P S, Novick P. Phosphoinositides as regulators in membrane traffic.  Science. 1996;  271 1533-1539
  • 46 Breton C, Mucha J, Jeanneau C. Structural and functional features of glycosyltransferases.  Biochimie. 2001;  83 713-718
  • 47 Kordowiak A M, Wojas J, SubczynŽski W K. Fluidity of rat liver Golgi membranes in streptozotocin diabetes. A spin label study.  Biochem Biophys Acta. 1990;  1022 296-302
  • 48 Siddhanta A, Shields D. Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels.  J Biol Chem. 1998;  273 17 995-17 998
  • 49 Siddhanta A, Bacek J M, Shields D. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion of endocrine cells.  J Biol Chem. 2000;  275 12 023-12 031

Prof. Dr. A. M. Kordowiak

Department of General Biochemistry, Faculty of Biotechnology

Jagiellonian University · 7 Gronostajowa. St. · 30-387 Krakow · Poland

Phone: +48(12)6646531

Fax: +48(12)6646902 ·

Email: mpdabros@cyf-kr.edu.pl; anna@piryt.net

    >