Abstract
Objective: Bone marrow-derived adult stem cells may be able to regenerate infarcted myocardium.
We initiated a phase-I study of autologous stem cell transplantation in patients undergoing
coronary artery bypass grafting. Methods: Inclusion criteria were: acute myocardial infarction > 10 days ago; presence of a
distinct area of infarcted and akinetic myocardium; CABG indicated to treat ischemia
of other LV wall areas. Stem cells were isolated from bone marrow using a ferrite-conjugated
AC133 antibody, and were injected in the infarct border zone during the CABG operation.
Results: To date, 12 patients were treated without major complications. There is no evidence
of new ventricular arrhythmia or neoplasia. Scintigraphic imaging demonstrated significantly
improved local perfusion in the stem cell-treated infarct area. LV dimensions (LVEDV
140 ± 38 ml vs. 124 ± 30 ml, p = 0.004, paired t-test) and LV ejection fraction (39.7 ± 9 % vs. 48.7 ± 6 %, p = 0.007) have improved. Conclusions: Bone marrow stem cell transplantation for myocardial regeneration can be safely performed
in humans. There is evidence of improved revascularization and contractility of infarct
areas, but controlled studies are needed to clearly determine the clinical benefit.
Key words
Myocardial infarction - coronary artery bypass - stem cells - AC133 - angiogenesis
References
- 1
Orlic D, Kajstura J, Chimenti S. et al .
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
- 2
Kocher A A, Schuster M D, Szabolcs M J. et al .
Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts
prevents cardiomyocytes apoptosis, reduces remodeling and improves cardiac function.
Nat Med.
2001;
7
430-436
- 3
Kamihata H, Matsubara H, Nishiue T. et al .
Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral
perfusion via side supply of angioblasts, angiogenic ligands, and cytokines.
Circulation.
2001;
103
634-637
- 4
Shake J G, Gruber P J, Baumgartner W A. et al .
Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment
and functional effects.
Ann Thorac Surg.
2002;
73
1919-1925
- 5
Tomita S, Mickle D AG, Weisel R D. et al .
Improved heart function with myogenesis and angiogenesis after autologous porcine
bone marrow stromal cell transplantation.
J Thorac Cardiovasc Surg.
2002;
123
1132-1140
- 6
Hamano K, Li T S, Kobayashi T. et al .
Therapeutic angiogenesis induced by local autologous bone marrow cell implantation.
Ann Thorac Surg.
2002;
73
1210-1215
- 7
Stamm C, Westphal B, Kleine H D. et al .
Autologous bone-marrow stem-cell transplantation for myocardial regeneration.
Lancet.
2003;
361
45-46
- 8
Menasche P, Hagege A A, Scorsin M. et al .
Myoblast transplantation for heart failure.
Lancet.
2001;
357
279-280
- 9
Makino S, Fukuda K, Miyoshi S. et al .
Cardiomyocytes can be generated from marrow stromal cells in vitro.
J Clin Invest.
1999;
103
697-705
- 10
Toma C, Pittenger M F, Cahill K S, Byrne B J, Kessler P D.
Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult
murine heart.
Circulation.
2002;
105
93-98
- 11
Takakura N, Watanabe T, Suenobu S. et al .
A role for hematopoietic stem cells in promoting angiogenesis.
Cell.
2000;
102
199-209
- 12
Isner J M, Kalka C, Kawamoto A, Asahara T.
Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair.
Ann N Y Acad Sci.
2001;
953
75-84
- 13
Asahara T, Masuda H, Takahashi T. et al .
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis
in physiological and pathological revascularization.
Circ Res.
1999;
85
221-228
- 14
Murayama T, Tepper O M, Silver M. et al .
Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic
growth factor-induced neovascularization in vivo.
Exp Hematol.
2002;
30
967-972
- 15
Hamano K, Nishida M, Hirata K. et al .
Local implantation of autologous bone marrow cells for therapeutic angiogenesis in
patients with ischemic heart disease: Clinical trial and preliminary results.
Jpn Circ J.
2001;
65
845-847
- 16
Tateishi-Yuyama E, Matsubara H, Murohara T. et al .
Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation
of bone-marrow cells: a pilot study and a randomised controlled trial.
Lancet.
2002;
360
427-435
- 17
Peichev M, Naiyer A J, Pereira D. et al .
Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population
of functional endothelial precursors.
Blood.
2000;
95
952-958
- 18
Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker P H, Verfaillie C M.
Origin of endothelial progenitors in human postnatal bone marrow.
J Clin Invest.
2002;
109
337-346
- 19
Bhatia M.
AC133 expression in human stem cells.
Leukemia.
2001;
15
1685-1688
- 20
Kuci S, Wessels J T, Buhring H J. et al .
Identification of a novel class of human adherent CD34- stem cells that give rise
to SCID-repopulating cells.
Blood.
2003;
101
869-876
1 Presented at the 32nd Annual Meeting of the German Society for Thoracic and Cardiovascular
Surgery, Leipzig, February 26, 2003
Prof. Dr. Gustav Steinhoff
Universität Rostock
Klinik für Herzchirurgie
Schillingallee 35
18057 Rostock
Germany
Phone: + 493814946101
Fax: + 49 38 14 94 61 02
Email: gustav.steinhoff@med.uni-rostock.de