Zusammenfassung
Die COPD ist durch eine nicht vollständig reversible Begrenzung des Atemflusses charakterisiert.
Die Limitation des Atemflusses ist meist fortschreitend und mit einer abnormen entzündlichen
Reaktion der Lungen vergesellschaftet. Die Begrenzung des Atemflusses erfolgt in der
Regel mit der Messung von FEV1.0 . FEV1.0 spiegelt jedoch nicht immer den Verlauf der Erkrankung wider und eignet sich nicht
zur Objektivierung einer pharmakologischen oder nicht-pharmakologischen Intervention.
Die Messung der forcierten Inspiration und der Belastbarkeit sollten daher in die
funktionelle Diagnostik integriert werden. Die abnorme Entzündungsreaktion kann mit
Hilfe verschiedener Methoden gemessen werden. Die Erhöhung der neutrophilen Granulozyten
ist aber nicht mit einem therapeutischen target gleichzusetzen. Der Begriff der abnormen
Entzündung der Atemwege beim Asthma bronchiale und der COPD hat zahlreiche Studien
initiiert, die den Stellenwert der inhalativen Corticosteroide, ICS, bei der COPD
belegen sollen. Während die ICS den Verlauf der COPD nicht verändern, reduzieren sie
möglicherweise Zahl und Schwere der Exacerbationen. Die Kombination von langwirksamen
β2 -Sympathatikomimetika und ICS ist den einzelnen Komponenten überlegen. Dies ist schwer
mit einer antientzündlichen Wirkung zu erklären, da das langwirksame Anticholinericum
Tiotropium keinen antientzündlichen Effekt aufweist, ohne jedoch den Kombinationspräparaten
in der symptomatischen und funktionellen Wirkung sowie in der Beeinflussung der Exazerbationen
unterlegen zu sein. Zukünftige medikamentöse Therapien müssen daher auf einem verbesserten
Verständnis der funktionellen Konsequenzen der Erkrankung und ihrer Pathogenese beruhen.
Abstract
COPD is characterized by a not fully reversible airflow limitation which is progressive
and associated with an abnormal inflammatory reaction of the lungs. Airflow limitation
is most often assessed by FEV1.0 . However, FEV1.0 does not always reflect the course of the disease and does not appropriately describe
the functional effect of a pharmacological or non-pharmacological intervention. Measurement
of inspiratory parameters, e.g. IC or FIV1.0 , as well as assessment of exercise capacity should therefore be part of functional
tests. The abnormal inflammatory reaction of the lungs can be assessed by a variety
of methods. However, the characteristic increase of the number of neutrophils does
not indicate a new therapeutic target. The term abnormal inflammation of the airways
in bronchial asthma as well as in COPD presumably prompted a number of studies investigating
the effects of inhalative corticosteroids in COPD. ICS do not alter the course of
the disease, however they may reduce the number and severity of exacerbations. Combination
of long-acting β -agonists and ICS exert a better effect than either compound alone. This beneficial
effect is difficult to explain by an anti-inflammatory action , as the long acting
anticholinergic tiotropium has a comparable symptomatic and functional effect and
reduces exacerbations without any known anti-inflammatory component. Future pharmacological
therapies should therefore be based on a better understanding of the functional consequences
of the disease and its pathogenesis.
Literatur
1
Pauwels R A, Buist A S, Calverley P M. et al .
Global strategy for the diagnosis, management, and prevention of chronic obstructive
pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease
(GOLD) Workshop summary.
Am J Respir Crit Care Med.
2001;
163
1256-1276
2
Worth H, Buhl R, Cegla U. et al .
Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie
zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und
Lungenemphysem (COPD).
Pneumologie.
2002;
56
704-738
3
Ferguson G T, Enright P L, Buist A S. et al .
Office spirometry for lung health assessment in adults: A consensus statement from
the National Lung Health Education Program.
Chest.
2000;
117
1146-1161
4
Halbert R J, Isonaka S, George D. et al .
Interpreting COPD prevalence estimates: what is the true burden of disease?.
Chest.
2003;
123
1684-1692
5
Viegi G, Pedreschi M, Pistelli F. et al .
Prevalence of airways obstruction in a general population: European Respiratory Society
vs American Thoracic Society definition.
Chest.
2000;
117
339S-345S
6
Schermer T R, Jacobs J E, Chavannes N H. et al .
Validity of spirometric testing in a general practice population of patients with
chronic obstructive pulmonary disease (COPD).
Thorax.
2003;
58
861-866
7 Fletcher C, Peto R, Tinker C. et al .The natural history of chronic bronchitis and
emphysema. Oxford University Press 1976
8
Pinto-Plata V M, Cote C, Cabral H. et al .
The 6-min walk distance: change over time and value as a predictor of survival in
severe COPD.
Eur Respir J.
2004;
23
28-33
9
Nishimura K, Izumi T, Tsukino M. et al .
Dyspnea is a better predictor of 5-year survival than airway obstruction in patients
with COPD.
Chest.
2002;
121
1434-1440
10
O'Donnell D E, Lam M, Webb K A.
Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic
obstructive pulmonary disease.
Am J Respir Crit Care Med.
1998;
158
1557-1565
11
O'Donnell D E.
Assessment of bronchodilator efficacy in symptomatic COPD: is spirometry useful?.
Chest.
2000;
117
42S-47S
12
O'Donnell D E, Revill S M, Webb K A.
Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
2001;
164
770-777
13
O'Donnell D E, Flüge T, Gerken F. et al .
Effects of Tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD.
Eur Respir J.
2004;
in press
14
Taube C, Lehnigk B, Paasch K. et al .
Factor analysis of changes in dyspnea and lung function parameters after bronchodilation
in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
2000;
162
216-220
15
Taube C, Kanniess F, Gronke L. et al .
Reproducibility of forced inspiratory and expiratory volumes after bronchodilation
in patients with COPD or asthma.
Respir Med.
2003;
97
568-577
16
Saetta M, Turato G, Maestrelli P. et al .
Cellular and structural bases of chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
2001;
163
1304-1309
17
Turato G, Zuin R, Miniati M. et al .
Airway inflammation in severe chronic obstructive pulmonary disease: relationship
with lung function and radiologic emphysema.
Am J Respir Crit Care Med.
2002;
166
105-110
18
Retamales I, Elliott W M, Meshi B. et al .
Amplification of inflammation in emphysema and its association with latent adenoviral
infection.
Am J Respir Crit Care Med.
2001;
164
469-473
19
Agusti A, MacNee W, Donaldson K. et al .
Hypothesis: Does COPD have an autoimmune component?.
Thorax.
2003;
58
832-834
20
Holz O, Zühlke I, Jaksztat E. et al .
Lung fibroblasts from patients with emphysema show a reduced proliferation rate in
culture.
Eur Respir J.
2004;
submitted
21
Kips J C, Peleman R A, Pauwels R A.
Methods of examining induced sputum: do differences matter?.
Eur Respir J.
1998;
11
529-533
22
Tsoumakidou M, Tzanakis N, Siafakas N M.
Induced sputum in the investigation of airway inflammation of COPD.
Respir Med.
2003;
97
863-871
23
Taube C, Holz O, Mücke M. et al .
Airway Response to Inhaled Hypertonic Saline in Patients with Moderate to Severe Chronic
Obstructive Pulmonary Disease.
Am J Respir Crit Care Med.
2001;
164
1810-1815
24
Keatings V M, Barnes P J.
Granulocyte activation markers in induced sputum: comparison between chronic obstructive
pulmonary disease, asthma, and normal subjects.
Am J Respir Crit Care Med.
1997;
155
449-453
25
Richter K, Holz O, Jorres R A. et al .
Sequentially induced sputum in patients with asthma or chronic obstructive pulmonary
disease.
Eur Respir J.
1999;
14
697-701
26
Jayaram L, Parameswaran K, Sears M R. et al .
Induced sputum cell counts: their usefulness in clinical practice.
Eur Respir J.
2000;
16
150-158
27
Hargreave F E, Leigh R.
Induced sputum, eosinophilic bronchitis, and chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
1999;
160
S53-S57
28
Kelly M M, Keatings V, Leigh R. et al .
Analysis of fluid-phase mediators.
Eur Respir J Suppl.
2002;
37
24s-39s
29
Kharitonov S A, Robbins R A, Yates D. et al .
Acute and chronic effects of cigarette smoking on exhaled nitric oxide.
Am J Respir Crit Care Med.
1995;
152
609-612
30
Repine J E, Bast A, Lankhorst I.
Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study
Group.
Am J Respir Crit Care Med.
1997;
156
341-357
31
Hunt J.
Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease.
J Allergy Clin Immunol.
2002;
110
28-34
32
Schleiss M B, Holz O, Behnke M. et al .
The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate.
Eur Respir J.
2000;
16
1115-1118
33
Rahman I.
Reproducibility of oxidative stress biomarkers in breath condensate: are they reliable?.
Eur Respir J.
2004;
23
183-184
34
Magnussen H, Richter K, Taube C.
Are chronic obstructive pulmonary disease (COPD) and asthma different diseases?.
Clin Exp Allergy.
1998;
28 Suppl 5
187-194
35
Decramer M, de B V, Dom R.
Functional and histologic picture of steroid-induced myopathy in chronic obstructive
pulmonary disease.
Am J Respir Crit Care Med.
1996;
153
1958-1964
36
Singh J M, Palda V A, Stanbrook M B. et al .
Corticosteroid therapy for patients with acute exacerbations of chronic obstructive
pulmonary disease: a systematic review.
Arch Intern Med.
2002;
162
2527-2536
37
Loppow D, Schleiss M B, Kanniess F. et al .
In patients with chronic bronchitis a four week trial with inhaled steroids does not
attenuate airway inflammation.
Respir Med.
2001;
95
115-121
38
Culpitt S V, Maziak W, Loukidis S. et al .
Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced
sputum in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
1999;
160
1635-1639
39
Niewoehner D E, Erbland M L, Deupree R H. et al .
Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary
disease. Department of Veterans Affairs Cooperative Study Group.
N Engl J Med.
1999;
340
1941-1947
40
Sutherland E R, Allmers H, Ayas N T. et al .
Inhaled corticosteroids reduce the progression of airflow limitation in chronic obstructive
pulmonary disease: a meta-analysis.
Thorax.
2003;
58
937-941
41
Highland K B, Strange C, Heffner J E.
Long-term effects of inhaled corticosteroids on FEV1 in patients with chronic obstructive
pulmonary disease. A meta-analysis.
Ann Intern Med.
2003;
138
969-973
42
Sin D D, McAlister F A, Man S F. et al .
Contemporary management of chronic obstructive pulmonary disease: scientific review.
JAMA.
2003;
290
2301-2312
43
Sin D D, Man S F.
Inhaled corticosteroids and survival in chronic obstructive pulmonary disease: does
the dose matter?.
Eur Respir J.
2003;
21
260-266
44
Fan V S, Bryson C L, Curtis J R. et al .
Inhaled corticosteroids in chronic obstructive pulmonary disease and risk of death
and hospitalization: time-dependent analysis.
Am J Respir Crit Care Med.
2003;
168
1488-1494
45
Suissa S.
Effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease:
immortal time bias in observational studies.
Am J Respir Crit Care Med.
2003;
168
49-53
46
Rabe K F.
Combination therapy for chronic obstructive pulmonary disease: one size fits all?.
Eur Respir J.
2003;
22
874-875
47
Nannini L, Lasserson T, Poole P.
Combined corticosteroid and longacting beta-agonist in one inhaler for chronic obstructive
pulmonary disease.
Cochrane Database Syst Rev.
2003;
4
CD003794
48
Calverley P M, Burge P S, Spencer S. et al .
Bronchodilator reversibility testing in chronic obstructive pulmonary disease.
Thorax.
2003;
58
659-664
49
Tashkin D P, Cooper C B.
The role of long-acting bronchodilators in the management of stable COPD.
Chest.
2004;
125
249-259
Prof. Dr. Helgo Magnussen
Krankenhaus Großhansdorf · Zentrum für Pneumologie und Thoraxchirurgie
Wöhrendamm 80
22927 Großhansdorf
Email: magnussen@pulmoresearch.de