Zusammenfassung
Während der Stillzeit kommt es über die Muttermilch zur Übertragung einer substanziellen
Menge von Kalzium von Mutter zu Kind. Aufgrund des physiologischen, hyperprolaktinämischen
Östrogenmangels und sekundärer Amenorrhö während der Laktationsphase kann der Körper
diesen Kalziumverlust nur zum Teil durch kompensatorische Mechanismen ausgleichen.
Jede Wöchnerin nimmt mit der Entscheidung, ob und wie lange sie ihr Kind stillt, aktiv
Einfluss auf den eigenen Knochenstoffwechsel. Die Mobilisation von Kalzium aus dem
maternalen Skelett während der Stillzeit ist deutlich variabler als während der Schwangerschaft.
Bei einer Stillzeit von 6 Monaten würde das mütterliche Skelett schätzungsweise 4
- 6 % an Knochenmineraldichte verlieren. Dieser Knochendichteverlust geht typischerweise
mit einem Abfall der biochemischen Laborparameter der Knochenformation (Osteocalcin,
knochenspezifische alkalische Phosphatase) sowie einem Anstieg der Marker der Knochenresorption
(N-Telopeptid, Desoxpyridinoline DPD und Hydroxyprolin-Ausscheidung im Urin) einher.
Eine prolongierte Stillzeit kann in Abhängigkeit von der Ausgangsknochendichte zu
einem deutlich stärker ausgeprägten Knochendichteverlust führen. Die genauen Mechanismen,
die den in einer verlängerten Laktationsperiode deutlich stärker ausgeprägten Knochendichteabfall
wieder ausgleichen, sind zurzeit völlig unbekannt. Eine besondere Rolle im Knochenstoffwechselumsatz
in der Stillzeit könnte das Parathormon verwandte Protein (PTHrP) spielen, das im
laktierenden Mammagewebe nachgewiesen werden konnte. Mit dem Abstillen und dem Wiedereinsetzen
der Menstruation folgt eine Erholungsphase mit erneutem Anstieg der Knochendichte
und einem Anstieg der Marker der Knochenformation sowie einem Abfall der Marker der
Knochenresorption. Das genauere Verständnis der physiologischen Zusammenhänge des
Knochenstoffwechsels während der Stillzeit, insbesondere die Modulation der Regeneration
des Knochens, könnte auch zu einem besseren Verständnis des Krankheitsbildes Osteoporose
und dem Management von Osteoporose-Patientinnen führen.
Abstract
During lactation calcium is directly transferred from the mother to child by breast
milk. Secondary amenorrhea caused by the elevated prolactin level associated with
a suppression of the hypothalamic-pituitary axis during lactation leads to a substantial
loss of calcium. The increased calcium demand is regulated by renal and intestinal
compensatory mechanisms as well as mobilization of the maternal skeletal depot. Each
puerpera influences the bone metabolism by the duration of breastfeeding or primary
weaning . Thus mobilization of calcium from the maternal skeleton during lactation
is more highly variable than in pregnancy. 6 months of lactation would approximately
lead to a loss of 4 - 6 % of the maternal mineral skeleton. The loss of bone mass
density is accompanied by a decrease of biochemical markers of bone formation (osteocalcin,
bone specific alkaline phosphatase) and by an increase of biochemical markers of bone
resorption (N-telopeptide, deoxypyridinoline [DPD], hydroxyproline excretion). Prolonged
lactation could induce a severe loss of bone mass density dependent on the peak bone
mass. Compensatory mechanisms explaining the increase of calcium availability are
still unknown. Parathyroid hormone-related protein (PTHrP) might have an important
role in calcium metabolism during lactation. PTHrP has been shown to be synthesized
in lactating mammary tissue. Weaning and the time until the return of menses was consistently
associated with the time of bone recovery. This is also demonstrated by a change in
markers of bone formation and resorption. Today the mechanisms associated with both
the rapid bone loss during lactation as well as the rapid recovery of bone that follows
weaning are still unknown. Particularly an understanding of bone mineral recovery
might influence the future treatment of postmenopausal osteoporosis.
Schlüsselwörter
Osteoporose - Stillzeit - Schwangerschaft - Knochendichte - Knochenstoffwechsel
Key words
Osteoporosis - lactation - pregnancy - bone mass density - bone metabolism
Literatur
- 1
Sowers M F.
Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis.
J Bone Miner Res.
1996;
11
1052-1059
- 2
Cross N A, Hillman L S, Allen S H, Krause G F, Viera N E.
Kalzium homeostasis and bone metabolism during pregnancy, lactation and postweaning:
A longitudinal study.
Am J Clin Nutr.
1995;
61
514-523
- 3
Specker B L, Tsang R, Ho M L.
Changes in calcium homeostasis over the first year postpartum: Effect of lactation
and weaning.
Obstet Gynecol.
1995;
78
56-62
- 4
Greer F R, Lane J, Ho M.
Elevated serum parathyroid hormone, calcitonin, and 1,25-Dihydroxyvitamin D in lactating
women nursing twins.
Am J Clin Nutr.
1984;
40
562-568
- 5
Laskey M A, Prentice A, Shaw J, Zachou T, Ceesay S M, Vasquez-Velasquez L, Fraser D R.
Breast-milk calcium concentrations during prolonged lactation in British and rural
Gambian mothers.
Acta Paediatr Scand.
1990;
79
507-512
- 6
Hadji P, Kalder M, Meyer-Wittkopf M, Gottschalk M, Münstedt K, Hars O, Schulz K-D.
Quantitative Ultrasonometrie (QUS) am Os calcaneus bei Frauen. Erstellung eines deutschen
Referenzkollektives.
Geburtsh Frauenheilk.
2001;
61
70-74
- 7
Kritz-Silverstein D, Barret-Connor E, Hollenbach K A.
Pregnancy and lactation as determinants of bone mineral density in postmenopausal
women.
Am J Epidemiol.
1992;
136
1052-1059
- 8
Fox K M, Magaziner J, Sherwin R, Scott J C, Plato C C, Nevitt M, Cummings S.
Reproductive correlates of bone mass in elderly women.
J Bone Miner Res.
1993;
8
901-908
- 9
Hadji P, Ziller V, Kalder M, Gottschalk M, Hellmeyer L, Hars O, Schmidt S, Schulz K D.
Influence of pregnancy and breast-feeding on quantitative ultrasonometry of bone in
postmenopausal women.
Climacteric.
2002;
5
277-285
- 10
Aloia J F, Vaswani A N, Yeh J K, Ross P, Ellis K, Cohn S H.
Determinants of bone mass in postmenopausal women.
Arch Intern Med.
1983;
143
1700-1704
- 11
Paton L M, Alexander J L, Nowson C A, Margerison C, Frame M G, Kaymakci B, Wark J D.
Pregnancy and lactation have no long-term deleterious effect on measures of bone mineral
in healthy women: a twin study.
Am J Clin Nutr.
2003;
77
707-714
- 12
Michaelsson K, Baron J A, Farahmand B Y, Ljunghall S.
Influence of parity and lactation on hip fracture risk.
Am J Epidemiol.
2001;
153
1166-1172
- 13
Hillier T A, Rizzo J H, Pedula K L, Stone K L, Cauley J A, Bauer D C, Cummings S R.
Nulliparity and fracture risk in older women: The study of osteoporotic fractures.
J Bone Miner Res.
2003;
18
893-899
- 14
Hillier T A, Rizzo J H, Pedula K L, Stone K L, Cauley J A, Bauer D C, Cummings S R.
Reply: Nulliparity and osteoporotic fracture risk.
J Bone Miner Res.
2004;
19
339
- 15
Hellmeyer L, Hadji P, Ziller V, Wagner U, Schmidt S.
Osteoporose in der Schwangerschaft.
Geburtsh Frauenheilk.
2004;
64
38-45
- 16
Goldsmith N F, Johnston J O.
Bone mineral: Effects of oral contraceptives, pregnancy and lactation.
J Bone Joint Surg.
1975;
57
657-668
- 17
Johnell O, Nilsson B E.
Lifestyle and bone mineral mass in perimenopausal women.
Calcif Tissue Int.
1984;
36
354-356
- 18
Sowers M FR, Wallace R B, Lemke J H.
Correlates of mid-radius bone density among premenopausal women: A community study.
Prev Med.
1985;
14
585-596
- 19
Wardlaw G M, Pike A M.
The effect of lactation on peak adult shaft and ultradistal forearm bone mass in women.
Am J Clin Nutr.
1986;
44
283-286
- 20
Feldblum P J, Zhang J, Rich L E, Fortney J A, Talmage R V.
Lactation history and bone mineral density among perimenopausal women.
Epidemiology.
1992;
3
527-531
- 21
Koetting C A, Wardlaw G M.
Wrist, spine and hip bone density in women with variable histories of lactation.
Am J Clin Nutr.
1988;
48
1479-1481
- 22
Henderson P H, Sowers M, Kutzko K E, Jannausch M L.
Bone mineral density in grand multiparous woman with extended lactation.
Am J Obstet Gynecol.
2000;
182
1371-1377
- 23
Laskey M A, Prentice A.
Bone mineral changes during and after lactation.
Obstet Gynecol.
1999;
4
608-615
- 24
Kent G N, Price R I, Gutteridge D H.
Human lactation: Forearm trabecular bone loss, increased bone turnover, and renal
conservation of calcium and inorganic phosphate with recovery of bone mass following
weaning.
J Bone Miner Res.
1990;
5
361-369
- 25
Sowers M F, Corton G, Shapiro B.
Changes in bone density with lactation.
JAMA.
1993;
269
3130-3135
- 26
Chan G M, Slater P, Ronald N. et al .
Bone mineral status of lactating mothers of different ages.
Am J Obstet Gynecol.
1982;
144
438-441
- 27
Sowers M F, Eyre D, Hollis B W, Randolph J F, Shapiro B, Jannausch M L, Crutchfield M.
Biochemical markers of bone turnover in lactating and nonlactating postpartum women.
J Clin Endocrinol Metab.
1995;
80
2210-2216
- 28
Polatti F, Capuzzo E, Viazzo F, Colleoni R, Klersy C.
Bone mineral changes during and after lactation.
Obstet Gynecol.
1999;
1
52-56
- 29
Sowers M F, Randolph J F, Shapiro B, Jannausch M.
A prospective study of bone density and pregnancy after an extended period of lactation
with bone loss.
Obstet Gynecol.
1995;
85
285-289
- 30
Prentice A, Landing M AJ, Cole T J, Stirling D M, Dibba B, Fairweather-Tait S.
Kalzium requirements of lactating Gambian mothers: Effects of a calcium supplement
on breastmilk calcium concentration, maternal bone mineral content, and urinary calcium
excretion.
Amer J Clin Nutr.
1995;
62
58-67
- 31
Yamaga A, Taga M, Minaguchi H, Saton K.
Changes in bone mass as determined by ultrasound and biochemical markers of bone turnover
during pregnancy and puerperium: A longitudinal study.
J Clin Endocrinol Metab.
1996;
81
752-756
- 32
More C, Bettembuk P, Bhattoa H P, Balogh A.
The effects of pregnancy and lactation on bone mineral density.
Osteoporos Int.
2001;
12
732-737
- 33
Karlsson C, Obrant K J, Karlsson M.
Pregnancy and lactation confer reversible bone loss in humans.
Osteoporos Int.
2001;
12
828-834
- 34
Lopez J M, Gonzales G, Reyes V, Campino C, Diaz S.
Bone turnover and density in healthy women during breastfeeding and after weaning.
Osteoporos Int.
1996;
6
153-159
- 35
Ratcliff W A, Thompson G E, Care A D. et al .
Production of parathyroid hormone-related by the mammary gland of the goat.
J Endocrinol.
1992;
133
87-93
- 36
Thiede M F, Rodan G A.
Expression of a cacium mobilizing parathyroid hormone like peptide in lactating mammary
tissue.
Science.
1988;
242
278-280
- 37
Stiegler C, Leb G, Kleinert R. et al .
Plasma levels of parathyroid hormone-related peptide are elevated in hyperprolactinemia
and correlated to bone density status.
J Bone Miner Res.
1995;
10
751-759
- 38
Kalkwarf H J, Specker B L.
Bone mineral changes during pregnancy and lactation.
Endocrine.
2002;
17
49-53
Dr. med. Lars Hellmeyer
Philipps-Universität Marburg
Klinik für Geburtshilfe und Perinatalmedizin
Pilgrimstein 3
35037 Marburg
eMail: Lars.Hellmeyer@t-online.de