Semin Respir Crit Care Med 2004; 25(1): 43-52
DOI: 10.1055/s-2004-822304
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Host Defense and Bacterial Pneumonia

Kyle I. Happel1 , Gregory J. Bagby2 , Steve Nelson1 , 2
  • 1Section of Pulmonary and Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
  • 2Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
Further Information

Publication History

Publication Date:
12 March 2004 (online)

Despite advances in antibiotic therapy, bacterial pneumonia remains a significant cause of morbidity and mortality. Pulmonary host defense has both an innate component, consisting of nonspecific antimicrobial factors, as well as an acquired component, which is pathogen-specific. Defects in either arm of the immune system can have a profound impact on the other because these are highly interactive systems. From the upper airway to the respiratory alveolus, defense mechanisms are in place to maintain sterility of the lower respiratory tract. These features include anatomical barriers, nonspecific antimicrobial peptides, the mucociliary escalator, and the airway lining fluid. In the airspaces, the alveolar macrophage is the cell responsible for early pathogen clearance and subsequent initiation of the acute inflammatory response. Neutrophil recruitment and acquired immune responses are dependent on cytokine secretion by these resident tissue phagocytes. This article reviews the salient features of innate and acquired immunity against bacterial pathogens and how host factors (such as alcoholism) undermine these antibacterial defenses.

REFERENCES

  • 1 Tenovuo J. Antimicrobial agents in saliva-protection for the whole body.  J Dent Res. 2002;  81 807-809
  • 2 Afzelius B A. A human syndrome caused by immotile cilia.  Science. 1976;  193 317-319
  • 3 Mandell G BJDR. Principles and Practice of Infectious Diseases. 5th ed. Oxford; Churchill Livingstone 2000
  • 4 Zaiou M, Gallo R L. Cathelicidins, essential gene-encoded mammalian antibiotics.  J Mol Med. 2002;  80 549-561
  • 5 Le Y, Yang Y, Cui Y et al.. Receptors for chemotactic formyl peptides as pharmacological targets.  Int Immunopharmacol. 2002;  2 1-13
  • 6 Shepherd V L. Pulmonary surfactant protein D: a novel link between innate and adaptive immunity.  Am J Physiol Lung Cell Mol Physiol. 2002;  282 L516-L517
  • 7 Medzhitov R. Toll-like receptors and innate immunity.  Nat Rev Immunol. 2001;  1 135-145
  • 8 Carswell E A, Old L J, Kassel R L et al.. An endotoxin-induced serum factor that causes necrosis of tumors.  Proc Natl Acad Sci USA. 1975;  72 3666-3670
  • 9 Ulich T R, Watson L R, Yin S M et al.. The intratracheal administration of endotoxin and cytokines, I: Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS-, IL-1-, and TNF-induced inflammatory infiltrate.  Am J Pathol. 1991;  138 1485-1496
  • 10 Nelson S, Bagby G J, Mason C, Summer W. Cytokines and the antibacterial defenses of the lung. In: Nelson S, Martin T Cytokines in Pulmonary Diseases. New York; Marcel Dekker 2000: 131-148
  • 11 Kolls J K, Lei D, Nelson S et al.. Adenovirus-mediated blockade of tumor necrosis factor in mice protects against endotoxic shock yet impairs pulmonary host defense.  J Infect Dis. 1995;  171 570-575
  • 12 Wunderink R G, Waterer G W, Cantor R M, Quasney M W. Tumor necrosis factor gene polymorphisms and the variable presentation and outcome of community-acquired pneumonia.  Chest. 2002;  121 87S
  • 13 Stephens K E, Ishizaka A, Larrick J W, Raffin T A. Tumor necrosis factor causes increased pulmonary permeability and edema: comparison to septic acute lung injury.  Am Rev Respir Dis. 1988;  137 1364-1370
  • 14 Yamaguchi T, Kakinuma K, Kaneda M, Shimada K. Comparative studies on alveolar macrophages and polymorphonuclear leukocytes, I: H2O2 and O2-generation by rabbit alveolar macrophages.  J Biochem (Tokyo). 1980;  87 1449-1455
  • 15 Mizgerd J P, Meek B B, Kutkoski G J et al.. Selectins and neutrophil traffic: margination and Streptococcus pneumoniae-induced emigration in murine lungs.  J Exp Med. 1996;  184 639-645
  • 16 Doerschuk C M. Leukocyte trafficking in alveoli and airway passages.  Respir Res. 2000;  1 136-140
  • 17 Doerschuk C M, Mizgerd J P, Kubo H, Qin L, Kumasaka T. Adhesion molecules and cellular biomechanical changes in acute lung injury.  Giles F. Filley Lecture. Chest.. 1999;  116 37S-43S
  • 18 Wagner J G, Roth R A. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature.  Pharmacol Rev. 2000;  52 349-374
  • 19 Kunkel S L, Standiford T, Kasahara K, Strieter R M. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung.  Exp Lung Res. 1991;  17 17-23
  • 20 Kunkel S L, Standiford T, Kasahara K, Strieter R M. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung.  Exp Lung Res. 1991;  17 17-23
  • 21 Greenberger M J, Strieter R M, Kunkel S L et al.. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia.  J Infect Dis. 1996;  173 159-165
  • 22 Boutten A, Dehoux M S, Seta N et al.. Compartmentalized IL-8 and elastase release within the human lung in unilateral pneumonia.  Am J Respir Crit Care Med. 1996;  153 336-342
  • 23 Bonten M J, Froon A H, Gaillard C A et al.. The systemic inflammatory response in the development of ventilator-associated pneumonia.  Am J Respir Crit Care Med. 1997;  156 1105-1113
  • 24 Nelson S, Bagby G J, Bainton B G et al.. Compartmentalization of intraalveolar and systemic lipopolysaccharide-induced tumor necrosis factor and the pulmonary inflammatory response.  J Infect Dis. 1989;  159 189-194
  • 25 Dale D C, Liles W C, Summer W R, Nelson S. Review: granulocyte colony-stimulating factor: role and relationships in infectious diseases.  J Infect Dis. 1995;  172 1061-1075
  • 26 Tazi A, Nioche S, Chastre J, Smiejan J M, Hance A J. Spontaneous release of granulocyte colony-stimulating factor (G-CSF) by alveolar macrophages in the course of bacterial pneumonia and sarcoidosis: endotoxin-dependent and endotoxin-independent G-CSF release by cells recovered by bronchoalveolar lavage.  Am J Respir Cell Mol Biol. 1991;  4 140-147
  • 27 Nelson S, Bagby G J. Granulocyte colony-stimulating factor and modulation of inflammatory cells in sepsis.  Clin Chest Med. 1996;  17 319-332
  • 28 Nelson S, Belknap S M, Carlson R W et al.. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. CAP Study Group.  J Infect Dis. 1998;  178 1075-1080
  • 29 Aggarwal S, Gurney A L. IL-17: prototype member of an emerging cytokine family.  J Leukoc Biol. 2002;  71 1-8
  • 30 Happel K I, Zheng M, Young E et al.. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection.  J Immunol. 2003;  170 4432-4436
  • 31 Yao Z, Painter S L, Fanslow W C et al.. Human IL-17: a novel cytokine derived from T cells.  J Immunol. 1995;  155 5483-5486
  • 32 Lankford C S, Frucht D M. A unique role for IL-23 in promoting cellular immunity.  J Leukoc Biol. 2003;  73 49-56
  • 33 Standiford T J, Kunkel S L, Greenberger M J, Laichalk L L, Strieter R M. Expression and regulation of chemokines in bacterial pneumonia.  J Leukoc Biol. 1996;  59 24-28
  • 34 van der Poll T, Marchant A, Keogh C V, Goldman M, Lowry S F. Interleukin-10 impairs host defense in murine pneumococcal pneumonia.  J Infect Dis. 1996;  174 994-1000
  • 35 Gallagher P M, Lowe G, Fitzgerald T et al.. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia.  Thorax. 2003;  58 154-156
  • 36 Cuzzocrea S, Mazzon E, Dugo L et al.. Absence of endogenous interleukin-10 enhances the evolution of acute lung injury.  Eur Cytokine Netw. 2002;  13 285-297
  • 37 Puren A J, Feldman C, Savage N, Becker P J, Smith C. Patterns of cytokine expression in community-acquired pneumonia.  Chest. 1995;  107 1342-1349
  • 38 Ortqvist A, Hedlund J, Wretlind B, Carlstrom A, Kalin M. Diagnostic and prognostic value of interleukin-6 and C-reactive protein in community-acquired pneumonia.  Scand J Infect Dis. 1995;  27 457-462
  • 39 Antunes G, Evans S A, Lordan J L, Frew A J. Systemic cytokine levels in community-acquired pneumonia and their association with disease severity.  Eur Respir J. 2002;  20 990-995
  • 40 Marik P E. The clinical features of severe community-acquired pneumonia presenting as septic shock. Norasept II Study Investigators.  J Crit Care. 2000;  15 85-90
  • 41 Bonten M J, Froon A H, Gaillard C A et al.. The systemic inflammatory response in the development of ventilator-associated pneumonia.  Am J Respir Crit Care Med. 1997;  156 1105-1113
  • 42 Monton C, Torres A, El Ebiary M et al.. Cytokine expression in severe pneumonia: a bronchoalveolar lavage study.  Crit Care Med. 1999;  27 1745-1753
  • 43 Schmidt W, De Lint J. Causes of death of alcoholics.  Q J Stud Alcohol. 1972;  33 171-185
  • 44 Saitz R, Ghali W A, Moskowitz M A. The impact of alcohol-related diagnoses on pneumonia outcomes.  Arch Intern Med. 1997;  157 1446-1452
  • 45 Zisman D A, Strieter R M, Kunkel S L et al.. Ethanol feeding impairs innate immunity and alters the expression of Th1- and Th2-phenotype cytokines in murine Klebsiella pneumonia.  Alcohol Clin Exp Res. 1998;  22 621-627

Steve NelsonM.D. 

Division of Pulmonary and Critical Care Medicine, Louisiana State University Health Sciences Center

1901 Perdido St., Ste. 3205, New Orleans

LA 70112-1393

Email: snelso1@lsusc.edu

    >