References
<A NAME="RD01504ST-1">1</A>
Paolesse R. In Syntheses of Corroles, The Porphyrin Handbook
Vol 2:
Kadish KM.
Smith KM.
Guilard R.
Academic Press;
San Diego:
2000.
Chap. 11.
p.201-232
<A NAME="RD01504ST-2">2</A>
Gross Z.
Simkhovich L.
Galili N.
Chem. Commun.
1999,
599
<A NAME="RD01504ST-3">3</A>
Simkhovich L.
Mahammed A.
Goldberg I.
Gross Z.
Chem.-Eur. J.
2001,
7:
1041
<A NAME="RD01504ST-4">4</A>
Simkhovich L.
Gross Z.
Tetrahedron Lett.
2001,
42:
8089
<A NAME="RD01504ST-5">5</A>
Aviezer D.
Cotton S.
David M.
Segev A.
Khaselev N.
Galili N.
Gross Z.
Yayon A.
Cancer Res.
2000,
60:
2973
<A NAME="RD01504ST-6">6</A> For a recent review on the recent synthetic methodologies leading to corroles
and core-modified corroles see:
Gryko DT.
Eur. J. Org. Chem.
2002,
1735
<A NAME="RD01504ST-7">7</A>
Gross Z.
Galili N.
Saltsman I.
Angew. Chem. Int. Ed.
1999,
38:
1427
<A NAME="RD01504ST-8">8</A>
Paolesse R.
Nardis S.
Sagone F.
Khoury RG.
J. Org. Chem.
2001,
66:
550
<A NAME="RD01504ST-9">9</A>
Collman JP.
Decréau RA.
Tetrahedron Lett.
2003,
44:
1207
<A NAME="RD01504ST-10">10</A>
Neya S.
Ohyama K.
Funasaki N.
Tetrahedron Lett.
1997,
38:
4113
<A NAME="RD01504ST-11">11</A>
Licoccia S.
Vona MLD.
Paolesse R.
J. Org. Chem.
1998,
63:
3190
<A NAME="RD01504ST-12">12</A>
Ka J.-W.
Cho W.-S.
Lee C.-H.
Tetrahedron Lett.
2000,
41:
8121
<A NAME="RD01504ST-13">13</A>
Asokan CV.
Smeets S.
Dehaen W.
Tetrahedron Lett.
2001,
42:
4483
<A NAME="RD01504ST-14">14</A>
Brinas RP.
Bruckner C.
Synlett
2001,
442
<A NAME="RD01504ST-15">15</A>
Broring M.
Hell C.
Chem. Commun.
2001,
2336
<A NAME="RD01504ST-16">16</A>
Gryko DT.
Piechota KE.
J. Porphyrins Phthalocyanines
2002,
6:
81
<A NAME="RD01504ST-17">17</A>
Decréau RA.
Collman JP.
Tetrahedron Lett.
2003,
44:
3323
<A NAME="RD01504ST-18">18</A>
Paolesse R.
Jaquinod L.
Senge MO.
Smith KM.
J. Org. Chem.
1997,
62:
6193
<A NAME="RD01504ST-19">19</A>
Mahammed A.
Giladi I.
Goldberg I.
Gross Z.
Chem.-Eur. J.
2001,
7:
4259
<A NAME="RD01504ST-20">20</A>
Mahammed A.
Goldberg I.
Gross Z.
Org. Lett.
2001,
3:
3443
<A NAME="RD01504ST-21">21</A>
Andrioletti B.
Rose E.
Chem. Commun.
2002,
715
<A NAME="RD01504ST-22">22</A>
Saltsman I.
Mahammed A.
Goldberg I.
Tkachenko E.
Botoshansky M.
Gross Z.
J. Am. Chem. Soc.
2002,
124:
7411
<A NAME="RD01504ST-23">23</A>
Saltsman I.
Goldberg I.
Gross Z.
Tetrahedron Lett.
2003,
44:
5669
<A NAME="RD01504ST-24">24</A>
Tomé AC.
Lacerda PSS.
Neves MGPMS.
Cavaleiro JAS.
Chem. Commun.
1997,
1199
<A NAME="RD01504ST-25">25</A>
Silva AMG.
Tomé AC.
Neves MGPMS.
Cavaleiro JAS.
Tetrahedron Lett.
2000,
41:
3065
<A NAME="RD01504ST-26">26</A>
Silva AMG.
Tomé AC.
Neves MGPMS.
Silva AMS.
Cavaleiro JAS.
Chem. Commun.
1999,
1767
<A NAME="RD01504ST-27">27</A>
Silva AMG.
Tomé AC.
Neves MGPMS.
Silva AMS.
Cavaleiro JAS.
Perrone D.
Dondoni A.
Tetrahedron Lett.
2002,
43:
603
<A NAME="RD01504ST-28">28</A>
Silva AMG.
Tomé AC.
Neves MGPMS.
Cavaleiro JAS.
Synlett
2002,
1155
<A NAME="RD01504ST-29">29</A>
Corrole 1 was prepared by following the procedure described in ref. 8.
<A NAME="RD01504ST-30">30</A>
Spectroscopic data for 2: 1H NMR (300 MHz, CDCl3): δ = 9.40 (d, 1 H, J = 4.1 Hz, H-18), 8.69 (d, 1 H, J = 4.1 Hz, H-17), 8.75 and 8.53 (2 d, 2 H, J = 4.7 Hz, H-7,8 or H-12,13), 8.60 and 8.41 (2 d, 2 H, J = 4.4 Hz, H-7,8 or H-12,13), 8.08 (s, 2 H, H-2′,14′), 7.70 (s, 2 H, H-7′,9′), 7.68-7.65
and 7.31-7.28 (2 m, 8 H, H-6′,10′,3′,13′ and H-5′,11′,4′,12′), 7.06 (s, 1 H, H-1′),
5.69 (s, 1 H, H-8′). 13C NMR (75 MHz, CDCl3, based on the HSQC and HMBC spectra): δ = 129.5 (C-β), 127.9 (C-β), 127.5 (C-6′,10′,3′,13′),
126.1 (C-5′,11′,4′,12′), 125.8 (C-β), 125.2 (C-β), 123.1 (C-17), 122.8 (C-2′,14′),
122.4 (C-7′,9′), 117.0 (C-18). HRMS-FAB [M]+: m/z = 1072.1698 (calcd for C59H23N4F15: 1072.1683). UV/Vis (CH2Cl2): λmax (log ε) = 411 (5.82), 567 (5.07), 609 nm (4.88).
<A NAME="RD01504ST-31">31</A>
Spectroscopic data for 3: 1H NMR (300 MHz, CDCl3): δ = 8.66 and 8.43 (2 d, 4 H, J = 4.7 Hz, H-7,13 and H-8,12), 8.39 (s, 4 H, H-2′,14′,7′′,9′′), 7.81 (s, 4 H, H-7′,9′,2′′,14′′),
7.82-7.80 (m, 4 H, H-6′,10′,3′′,13′′), 7.79-7.76 (m, 4 H, H-13′,3′,6′′,10′′), 7.56
(s, 2 H, H-1′,8′′), 7.47-7.39 (m, 8 H, H-4′,12′,5′′,11′′ and H-5′,11′,4′′,12′′), 5.78
(s, 2 H, H-8′,1′′). 13C NMR (75 MHz, CDCl3): δ = 141.7 and 141.6 (C-1′a,7′a,8′a,14′a,1′′a,7′′a,8′′a,14′′a), 138.0 (C-2,3,17,18),
131.9 and 131.8 (C-2′a,6′a,9′a,13′a,2′′a,6′′a,9′′a,13′′a), 128.0 (C-7,13 or C-8,12),
127.7 and 127.5 (C-6′,10′,3′′,13′′), 126.9 (C-7,13 or C-8,12), 126.35 and 126.29 (C-4′,12′,5′′,11′′
and C-5′,11′,4′′,12′′), 122.7 (C-2′,14′,7′′,9′′), 122.6 (C-7′,9′,2′′,14′′), 50.4 (C-1′,8′′),
49.5 (C-8′,1′′). HRMS (ES) [M + H]+: m/z = 1349.2747 (calcd for C81H36N4F15: 1349.2695). UV/Vis (CH2Cl2): λmax (log ε) = 415 (5.14), 573 (4.44), 612 nm (4.23).
<A NAME="RD01504ST-32">32</A>
Spectroscopic data for 5: 1H NMR (300 MHz, CDCl3): δ = 8.64 (d, 2 H, J = 4.5 Hz, H-7,13 or H-8,12), 8.61 (s, 2 H, H-3,17), 8.47 (d, 2 H, J = 4.5 Hz, H-7,13 or H-8,12), 8.57 (s, 2 H, H-3,17), 8.19 (s, 4 H, H-2′,7′,9′,14′),
7.72-7.69 and 7.28-7.25 (2 m, 8 H, H-3′,6′,10′,13′ and H-4′,5′,11′,12′), 6.68 (s,
2 H, H-1′,8′). 13C NMR (75 MHz, CDCl3, based on the HSQC and HMBC spectra): δ = 138.0 (C-1′a,7′a,8′a,14′), 132.6 (C-2′a,6′a,9′,13′),
127.5 (C-2′,7′,9′,14′), 127.2 (C-3′,6′,10′,13′), 126.0 (C-4′,5′,11′,12′), 125.0 and
124.7 (C-7,13 and C-8,12), 115.6 (C-1′,8′). HRMS-FAB [M + H]+: m/z = 1073.1791 (calcd for C59H24N4F15: 1073.1761). UV/Vis (CH2Cl2): λmax (log ε) = 424 (5.01), 565 (4.07), 615 nm (3.91).
<A NAME="RD01504ST-33">33</A>
Examples of thermal [4+4] cycloaddition reactions have been reported in the literature.
In some cases [4+4] cycloadditions compete with Diels-Alder reactions.
[34-37]
<A NAME="RD01504ST-34">34</A>
Toda M.
Okada K.
Oda M.
Tetrahedron Lett.
1988,
29:
2329
<A NAME="RD01504ST-35">35</A>
Chou T.-S.
Chang R.-C.
J. Org. Chem.
1993,
58:
493
<A NAME="RD01504ST-36">36</A>
Chou T.-S.
Chen H.-C.
Tsai C.-Y.
J. Org. Chem.
1994,
59:
2241
<A NAME="RD01504ST-37">37</A>
Leung M.-K.
Trahanovsky WS.
J. Am. Chem. Soc.
1995,
117:
841