Anästhesiol Intensivmed Notfallmed Schmerzther 2004; 39(8): 456-462
DOI: 10.1055/s-2004-825736
Aktuelle Medizin und Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Xenon - Edelgas mit organprotektiven Eigenschaften

Xenon - Noble Gas With Organprotective PropertiesB.  Preckel1 , N.  Weber1 , W.  Schlack1
  • 1 Klinik für Anästhesiologie (Direktor: Prof. Dr. med. Jörg Tarnow), Universitätsklinikum Düsseldorf
Further Information

Publication History

Publication Date:
20 August 2004 (online)

Zusammenfassung

Neben anästhetischen Eigenschaften bewirkt Xenon biologische Veränderungen, welche eine Organprotektion hervorrufen können. So reduziert Xenon als potenter NMDA-Rezeptor-Antagonist den über NMDA-Rezeptoren vermittelten neuronalen Schaden. Im Gegensatz zu anderen NMDA-Rezeptor-Antagonisten hat Xenon gleichzeitig selbst keine neurotoxischen Begleiteffekte. Xenon schützt zudem das Herz in Ischämie-Reperfusionssituationen. Der myokardiale Reperfusionsschaden wird durch Xenon vermindert und eine Myokardprotektion im Sinne einer pharmakologischen Präkonditionierung induziert. Die organprotektiven Eigenschaften könnten für die Verwendung von Xenon in ausgewählten klinischen Situationen sprechen.

Abstract

Besides it’s anaesthetic properties, xenon may induce biological effects that may protect various organs from ischaemia-reperfusion injury. Xenon is an antagonist of the NMDA-receptor and reduces the neuronal injury mediated via these receptors. In contrast to other NMDA-receptor antagonists, xenon has no neurotoxic side effects. Xenon also protects the heart in ischaemia-reperfusion situations. Xenon reduces the post-ischaemic reperfusion injury and offers cardioprotection by inducing pharmacological preconditioning. These organprotective properties of xenon might be useful in special clinical situations.

Literatur

  • 1 Cullen S C, Gross E G. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton.  Science. 1951;  113 580-583
  • 2 Rossaint R, Reyle-Hahn M, Schulte am Esch J, Scholz J, Scherpereel P, Vallet B, Giunta F, Del Turco M, Erdmann W, Tenbrinck R, Hammerle A F, Nagele P. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery.  Anesthesiology. 2003;  98 6-13
  • 3 Dingley J, Findlay G P, Foëx P, Mecklenburgh J, Esmail M, Little R A. A closed xenon anesthesia delivery system.  Anesthesiology. 2001;  94 173-176
  • 4 Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M, Morita S. The blood-gas partition coefficient of xenon may be lower than generally accepted.  Br J Anaesth. 1998;  80 255-256
  • 5 Goto T, Saito H, Shinkai M, Nakata Y, Ichinose F, Morita S. Xenon provides faster emergence from anesthesia than does nitrous oxide-sevoflurane or nitrous oxide-isoflurane.  Anesthesiology. 1997;  86 1273-1278
  • 6 Nakata Y, Goto T, Morita T. Comparison of inhalation inductions with xenon and sevoflurane.  Acta Anaesthesiol Scand. 1997;  41 1157-1161
  • 7 Boomsma F, Rupreht J, Man In't Veld A J, de Jong F H, Dzoljic M, Lachmann B. Haemodynamic and neurohumoral effects of xenon anaesthesia.  Anaesthesia. 1990;  45 273-278
  • 8 Dingley J, King R, Hughes L, Terblanche C, Mahon S P, Hepp M, Youhana A, Watkins A. Exploration of xenon as a potential cardiostable sedative: a comparison with propofol after cardiac surgery.  Anaesthesia. 2001;  56 829-835
  • 9 Lachmann B, Armbruster S, Schairer W, Landstra M, Trouwborst A, van Daal G-J, Kusuma A, Erdmann W. Safety and efficacy of xenon in routine use as an inhalational anaesthetic.  Lancet. 1990;  335 1413-1415
  • 10 Luttropp H H, Romner B, Perhag L, Eskilsson J, Fredriksen S, Werner O. Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. A transoesophageal echocardiography and transcranial Doppler sonography study.  Anaesthesia. 1993;  48 1045-1049
  • 11 Preckel B, Müllenheim J, Moloschavij A, Thämer V, Schlack W. Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo.  Anesth Analg. 2000;  91 1327-1332
  • 12 Toma O, Weber N C, Obal D, Preckel B, Schlack W. Xenon induces myocardial protection by preconditioning. Involvement of protein kinase C (PKC).  Anesthesiology. 2003;  Meeting Abstracts 2003 A1540
  • 13 Ma D, Wilhelm S, Maze M, Franks N P. Neuroprotective and neurotoxic properties of the inert gas xenon.  Br J Anaesth. 2002;  89 739-746
  • 14 Ma D, Yang H, Lynch J, Franks N P, Maze M, Grocott H P. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat.  Anesthesiology. 2003;  98 690-698
  • 15 Wilhelm S, Ma D, Maze M, Franks N P. Effects of Xenon on in vitro and in vivo models of neuronal injury.  Anesthesiology. 2002;  96 1485-1491
  • 16 Nakata Y, Goto T, Saito H, Ishiguro Y, Terui K, Kawakami H, Tsuruta Y, Niimi Y, Morita S. Plasma concentration of fentanyl with xenon to block somatic and hemodynamic responses to surgical incision.  Anesthesiology. 2000;  92 1043-1048
  • 17 Yagi M, Mashimo T, Kawaguchi T, Yoshiya I. Analgesic and hypnotic effects of subanaesthetic concentrations of xenon in human volunteers: comparison with nitrous oxide.  Br J Anaesth. 1995;  74 670-673
  • 18 Sanders R D, Franks N P, Maze M. Xenon: no stranger to anaesthesia.  Br J Anaesth. 2003;  91 709-717
  • 19 Franks N P, Dickinson R, de Sousa S L, Hall A C, Lieb W R. How does xenon produce anaesthesia?.  Nature. 1998;  396 324
  • 20 Yamakura T, Harris R A. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels: Comparison with isoflurane and ethanol.  Anesthesiology. 2000;  93 1095-1101
  • 21 Marubio L M, Mar A rroyo-Jimenez, Cordero-Erausquin M, Lena C, Le N overe, de Kerchove d'Exaerde A, Huchet M, Damaj M I, Changeux J P. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits.  Nature. 1999;  398 805-810
  • 22 Suzuki T, Koyama H, Sugimoto M, Uchida I, Mashimo T. The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydoxytryptamine 3 receptors expressed in Xenopus oocytes.  Anesthesiology. 2002;  96 699-704
  • 23 Lipton S A, Rosenberg P A. Excitatory amino acids as a final common pathway for neurologic disorders.  N Engl J Med. 1994;  330 613-622
  • 24 Cullen S C, Eger E I2, Cullen B F, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane.  Anesthesiology. 1969;  31 305-309
  • 25 Nakata Y, Goto T, Ishiguro Y, Terui K, Kawakami H, Santo M, Niimi Y, Morita S. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans.  Anesthesiology. 2001;  94 611-614
  • 26 Eger E I2, Brandstater B, Saidman L J, Regan M J, Severinghaus J W, Munson E S. Equipotent alveolar concentrations of methoxyflurane, halothane, diethyl ether, fluroxene, cyclopropane, xenon and nitrous oxide in the dog.  Anesthesiology. 1965;  26 771-777
  • 27 Koblin D D, Fang Z X, Eger E I, Laster M J, Gong D, Ionescu P, Halsey M J, Trudell J R. Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: Helium and neon as nonimmobilizers (nonanaesthetics).  Anesth Analg. 1998;  87 419-424
  • 28 Fukuda T, Nakayama H, Yanagi K, Mizutani T, Miyabe M, Ohshima N, Toyooka H. The effects of 30 % and 60 % xenon inhalation on pial vessel diameter and intracranial pressure in rabbits.  Anesth Analg. 2001;  92 1245-1250
  • 29 Yamaguchi S, Midorikawa Y, Okuda Y, Kitajima T. Propofol prevents delayed neuronal death following transient forebrain ischemia in gerbils.  Can J Anaesth. 1999;  46 593-598
  • 30 Allen H L, Iversen L L. Phencyclidine, dizocilpine, and cerebrocortical neurons.  Science. 1990;  247 221
  • 31 Jevtovic-Todorovic V, Todorovic S M, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski C F, Olney J W. Nitrous oxide (laughing gas) is a NMDA antagonist, neuroprotectant and neurotoxin.  Nature Med. 1998;  4 460-463
  • 32 Obrenovitch T P. High extracellular glutamate and neuronal death in neurological disorders.  Cause, contribution or consequence? Ann N Y Acad Sci. 1999;  890 273-286
  • 33 Petzelt C, Blom P, Schmehl W, Müller J, Kox W J. Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon.  Life Sci. 2003;  72 1909-1918
  • 34 Schmidt M, Marx T, Kotzerke J, Lüderwald S, Armbruster S, Topalidis P, Schirmer U, Reinelt H. Cerebral and regional organ perfusion in pigs during xenon anaesthesia.  Anaesthesia. 2001;  56 1154-1159
  • 35 Fink H, Blobner M, Bogdanski R, Hänel F, Werner C, Kochs E. Effects of xenon on cerebral blood flow and autoregulation: an experimental study in pigs.  Br J Anaesth. 2000;  84 221-225
  • 36 Plougmann J, Astrup J, Pedersen J, Gyldensted C. Effect of stable xenon inhalation on intracranial pressure during measurement of cerebral blood flow in head injury.  J Neurosurg. 1994;  81 822-828
  • 37 Frietsch T, Bogdanski R, Blobner M, Werner C, Kuschinsky W, Waschke K F. Effects of xenon on cerebral blood flow and cerebral glucose utilization in rats.  Anesthesiology. 2001;  94 290-297
  • 38 Nakayama H, Takahashi H, Okubo N, Miyabe M, Toyooka H. Xenon and nitrous oxide do not depress cardiac function in an isolated rat heart model.  Can J Anesth. 2002;  49 375-379
  • 39 Stowe D F, Rehmert G C, Kwok W M, Weigt H U, Georgieff M, Bosnjak Z J. Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts or myocytes.  Anesthesiology. 2000;  92 516-522
  • 40 Schroth S, Schotten U, Alkanoglu O, Reyle-Hahn M, Hanrath P, Rossaint R. Xenon does not impair the responsiveness of cardiac muscle bundles to positive inotropic and chronotropic stimulation.  Anesthesiology. 2002;  96 422-427
  • 41 Marx T, Wagner D, Bäder S, Görtz A, Georgieff M, Fröba G. Hemodynamics and catecholamines in anesthesia with different concentrations of xenon.  ACP. 1998;  7 215-221
  • 42 Picker O, Schindler A W, Schwarte L A, Preckel B, Schlack W, Scheeren T WL, Thämer V. Xenon increases total body oxygen consumption during isoflurane anaesthesia in dogs.  Br J Anaesth. 2002;  88 546-554
  • 43 Preckel B, Ebel D, Müllenheim J, Fräßdorf J, Thämer V, Schlack W. The direct myocardial effects of xenon in the dog heart in vivo.  Anesth Analg. 2002;  94 545-551
  • 44 Hettrick D A, Pagel P S, Kersten J R, Tessmer J P, Bosnjak Z J, Georgieff M, Warltier D C. Cardiovascular effects of xenon in isoflurane-anesthetized dogs with dilated cardiomyopathy.  Anesthesiology. 1998;  89 1166-1173
  • 45 Preckel B, Schlack W, Heibel T, Rütten H. Xenon produces minimal haemodynamic effects in rabbits with chronically compromised left ventricular function.  Br J Anaesth. 2002;  88 264-269
  • 46 Nakata Y, Goto T, Morita S. Effects of xenon on hemodynamic responses to skin incision in humans.  Anesthesiology. 1999;  90 406-410
  • 47 Jennings R B, Yellon D M. Reperfusion injury. Definitions and historical background. In: Yellon DM, Jennings RB, (eds) Myocardial protection: The pathophysiology of reperfusion and reperfusion injury. New York; Raven Press 1992: 1-11
  • 48 Siegmund B, Schlüter K D, Piper H M. Calcium and the oxygen paradox.  Cardiovasc Res. 1993;  27 1778-1783
  • 49 Preckel B, Schlack W, Comfère T, Obal D, Barthel H, Thämer V. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo.  Br J Anaesth. 1998;  81 905-912
  • 50 Siegmund B, Schlack W, Ladilov Y V, Balser C, Piper H M. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture.  Circulation. 1997;  96 4372-4379
  • 51 Garcia-Dorado D, Inserte J, Ruiz-Meana M, González M A, Solares J, Juliá M, Barrabés J A, Soler-Soler J. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion.  Circulation. 1997;  96 3579-3586
  • 52 Petzelt C, Taschenberger G, Schmehl W, Kox W J. Xenon-induced inhibition of Ca2+-regulated transitions in the cell cycle of human endothelial cells.  Pflügers Arch Eur J Physiol. 1999;  437 737-744
  • 53 Petzelt C, Osés-prieto J, Klett F F, Schmehl W, Kox W J. Effects of xenon on intracellular Ca2+ release in human endothelial cells.  Exp Biol Online. 1997;  2 3-9
  • 54 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;  74 1124-1136
  • 55 Van Winkle D M, Thornton J D, Downey J M. Cardioprotection from ischemic preconditioning is lost following prolonged reperfusion in the rabbit.  Coron Artery Dis. 1991;  2 613-619
  • 56 Qiu Y M, Tang X L, Park S W, Sun J Z, Kalya A, Bolli R. The early and late phases of ischemic preconditioning - A comparative analysis of their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs undergoing a 40- minute coronary occlusion.  Circ Res. 1997;  80 730-742
  • 57 Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T. Infarct size limiting effect of ischemic preconditioning is blunted by inhibition of 5`-Nucleotidase activity and attenuation of adenosine release.  Circulation. 1994;  89 1237-1246
  • 58 Tsuchida A, Liu Y, Liu G S, Cohen M V, Downey J M. alpha 1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C.  Circ Res. 1994;  75 576-585
  • 59 Yao Z, Gross G J. Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs.  Am J Physiol. 1993;  264 H2221-H2225
  • 60 Schultz J EJ, Hsu A K, Gross G J. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart.  Circ Res. 1996;  78 1100-1104
  • 61 Hartman J C, Wall T M, Hullinger T G, Shebuski R J. Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140.  J Cardiovasc Pharmacol. 1993;  21 996-1003
  • 62 Cope D K, Impastato W K, Cohen M V, Downey J M. Volatile anesthetics protect the ischemic rabbit myocardium from infarction.  Anesthesiology. 1997;  86 699-709
  • 63 Toller W G, Kersten J R, Gross E R, Pagel P S, Warltier D C. Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins.  Anesthesiology. 2000;  92 1400-1407
  • 64 Cason B A, Gamperl A K, Slocum R E, Hickey R F. Anesthetic-induced preconditioning - Previous administration of isoflurane decreases myocardial infarct size in rabbits.  Anesthesiology. 1997;  87 1182-1190
  • 65 Kersten J R, Schmeling T J, Pagel P S, Gross G J, Warltier D C. Isoflurane mimics ischemic preconditioning via activation of K ATP channel - Reduction of myocardial infarct size with an acute memory phase.  Anesthesiology. 1997;  87 361-370
  • 66 Toller W G, Kersten J R, Pagel P S, Hettrick D A, Warltier D C. Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs.  Anesthesiology. 1999;  91 1437-1446
  • 67 Novalija E, Fujita S, Kampine J P, Stowe D F. Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts.  Anesthesiology. 1999;  91 701-712
  • 68 Toller W G, Gross E R, Kersten J R, Pagel P S, Gross G J, Warltier D C. Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium channels: mechanism of desflurane induced cardioprotection.  Anesthesiology. 2000;  92 1731-1739
  • 69 Uecker M, Da Silva R, Grampp T, Pasch T, Schaub M C, Zaugg M. Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning.  Anesthesiology. 2003;  99 138-147
  • 70 Weber N C, Wolter J I, Toma O, Schlack W, Preckel B. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKCe and p38 MAPK.  Naunyn Schmiedebergs Arch Pharmacol. 2004;  369 (Suppl 1) A52
  • 71 Carr C S, Hill R J, Masamune H, Kennedy S P, Knight D R, Tracey W R, Yellon D M. Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia.  Cardiovasc Res. 1997;  36 52-59
  • 72 Speechly-Dick M E, Grover G J, Yellon D M. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model.  Circ Res. 1995;  77 1030-1035
  • 73 Cleveland J C,Jr, Meldrum D R, Cain B S, Banerjee A, Harken A H. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited.  Circulation. 1997;  96 29-32
  • 74 Deutsch E, Berger M, Kussmaul W G, Hirshfeld J W, Herrmann H C, Laskey W K. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features.  Circulation. 1990;  82 2044-2051
  • 75 Okazaki Y, Kodama K, Sato H, Kitakaze M, Hirayama A, Mishima M, Hori M, Inoue M. Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon.  J Am Coll Cardiol. 1993;  21 1597-1604
  • 76 Belhomme D, Peynet J, Louzy M, Launay J M, Kitakaze M, Menasche P. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery.  Circulation. 1999;  100 340-344
  • 77 Julier K, Da Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A, Chassot P G, Schmidt E R, Turina M I, von Segesser L K, Pasch T, Spahn D R, Zaugg M. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study.  Anesthesiology. 2003;  98 1315-1327
  • 78 Schirmer U, Reinelt H, Erber M, Schmidt M, Marx T. Xenon washout during in-vitro extracorporeal circulation using different oxygenators.  J Clin Monit Comput. 2002;  17 211-215
  • 79 Siegmund B, Zude R, Piper H M. Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload.  Am J Physiol. 1992;  263 H1262-H1269
  • 80 Siegmund B, Ladilov Y, Piper H M. Importance of Na+ for the recovery of Ca2+ control in reoxygenated cardiomyocytes.  Am J Physiol. 1994;  267 H506-H513

Priv.-Doz. Dr. Benedikt Preckel, DEAA

Klinik für Anästhesiologie

Universitätsklinikum Düsseldorf · Postfach 10 10 07 · 40001 Düsseldorf

Email: preckel@med.uni-duesseldorf.de