Abstract
Impaired glucose uptake and metabolism by peripheral tissues is a common feature in
both type I and type II diabetes mellitus. This phenomenon was examined in the context
of oxidative stress and the early events within the insulin signalling pathway using
soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki
(GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated
glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative
glucose disposal pathways represented by glucose oxidation and glycogen synthesis
in soleus muscles of GK rats appear to be resistant to the action of insulin when
compared to their corresponding control values. These diabetes-related abnormalities
in glucose disposal were associated with a marked diminution in the insulin-mediated
enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated
phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements
in the insulin signalling pathway. Moreover, heightened state of oxidative stress,
as indicated by protein bound carbonyl content, was evident in soleus muscle of GK
diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant α
-lipoic-acid (ALA, 100 mg/kg, ip) partly ameliorated the diabetes-related deficit
in glucose metabolism, protein oxidation as well as the activation by insulin of the
various steps of the insulin signalling pathway, including the enzymes Akt/PKB and
PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative
stress may indeed be involved in the pathogenesis of certain types of insulin resistance.
It also harmonizes with the notion of including potent antioxidants such as ALA in
the armamentarium of antidiabetic therapy.
Key words
Insulin Resistance · α-lipoic Acid · Goto-Kakizaki Rats · Type II Diabetes
References
- 1
Olefsky J M, Kolterman O G.
Scarlwtt JA. Insulin action and resistance in obesity and non-insulin-dependent type
II diabetes mellitus.
Am J Physiol.
1982;
243
E15-E30
- 2
Shepherd P R, Kahn B B.
Glucose transporters and insulin action: implications for insulin resistance and diabetes
mellitus.
N Engl J Med.
1999;
341
248-257
- 3
Hamman R F.
Genetic and environmental determinations of non-insulin-dependent diabetes mellitus
(NIDDM). Diabetes. Metab.
Rev.
1992;
8
287-338
- 4
Kahn C R.
The molecular mechanisms of insulin action.
Annu Rev Med.
1985;
36
429-451
- 5
Reavon G M.
Role of insulin resistance in human disease.
Diabetes.
1988;
37
1595-1607
- 6
De Fronzo R A.
Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity,
hypertension, dyslipedemia and atherosclerotic cardiovascular disease.
Diabetes care.
1991;
14
173-194
- 7
Kraus W.
Insulin resistance syndrome and cardiovascular disease: Genetic and connections to
skeletal muscle function.
Am Heart J.
1999;
138
413-416
- 8
De Fronzo R A.
Lilly lecture 1987: The triumvirate: β-cell, muscle, liver: a collusion responsible
for NIDDM.
Diabetes.
1988;
37
667-687
- 9
Dombrowski L, Roy D, Marcottee B, Marette A.
A new procedure for the isolation of plasma membrane, T tubules and internal membranes
from skeletal muscle.
Am J Physiol.
1996;
270
E667-E676
- 10
Czech M P, Corvera S.
Signaling mechanisms that regulates glucose transport.
J Biol Chem.
1996;
274
1865-1868
- 11
Zorzano A, Munoz P, Camps M, Mora C, Testar X, Palacin M.
Insulin induced redistribution of GLUT4 glucose carriers in the muscle fibre in search
of GLUT4 trafficking pathways.
Diabetes.
1996;
45
S70-S81
- 12
Sun X J, Pons S, Asano T, Myers M G, Jr, Glasheen E M, White M F.
The Fyn Tyrosine Kinase Binds Irs-1 and Forms a Distinct Signaling Complex during
Insulin Stimulation.
J Biol Chem.
1996;
271
10583-10587
- 13
Beitner-Johnson D, Blakesley V A, Shen-Orr Z, Jimenez M, Stannard B, Wang LM, Pierce JH,
Le Roith D.
The Proto-oncogene Product c-Crk Associates with Insulin Receptor Substrate-1 and
4PS.
J Biol Chem.
1996;
271
9287-9290
- 14
Shepherd P R, Withers D J, Siddle K.
Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.
Biochem J.
1998;
333
471-490
- 15
Tirosh A, Rudich A, Potashinik R, Bashan N.
Oxidative stress impairs insulin but not platelet-derived growth factor signalling
in 3T3-L1 adiopocytes. Biochem.
J.
2001;
355
757-763
- 16
Blair A S, Hajduch E, Litherland G J, Hundal H S.
Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative
stress.
J Biol Chem.
1999;
274
36 293-36 299
- 17
Jacob S, Henriksen E J, Schiemann A L. et al .
Enhancement of glucose disposal in patients with type II diabetes by alpha-lipoic
acid.
Arzneimittelforschung.
1995;
45
872-874
- 18
Caballero B.
Vitamin E improves the action of insulin.
Nutr Rev.
1993;
51
319-340
- 19
Paolisso G D, Amore A, Bulbi V. et al .
Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin
dependent diabetics.
Am J Physiol.
1994;
266
E261-E268
- 20
Goto Y, Kakizaki M, Masaki N.
Production of spontaneous diabetic rats by repetition of selective breeding.
Tohoku J Exp Med.
1975;
119
85-90
- 21
Goto Y, Kakizaki M, Masaki N.
Spontaneous diabetes produced by selective breeding of normal Wistar rats.
Proc J Jpn Acad.
1975;
5
80-85
- 22 Goto Y, Suzuki K I, Sasaki M, Ono T, Abe S.
GK rat as a model of non obese, non insulin dependent diabetes: Selective breeding
over 35 generations. In: Shafir E, Renold AE, (eds) Frontiers in Diabetes Research. Lessons from Animal
Diabetes 11. London; John Libbey 1988: 301-303
- 23
Henriksen E J, Tischler M E.
Time course of the response of carbohydrate metabolism to unloading of the soleus.
Metabolism.
1988;
37
201-208
- 24
Gulve E A, Henriksen E J, Rodnick K J, Youn J H, Hollozy J O.
Glucose transporters and glucose transport in skeletal muscles of 1 to 25 month old
rats.
Am J Physiol.
1993;
264
E319-E327
- 25
Hadari Y R, Tzahar E, Nadiv O, Rothenberg P, Roberts C T, Jr, Le Roith D, Yarden Y,
Zick Y.
Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3-kinase
upon its association with pp 185 (IRS-1) in intact rat liver.
J Biol Chem.
1992;
267
17483-17486
- 26
Cross D A, Alessi D R, Cohen P, Andjelkovich M, Hemmings B A.
Inhibition of glycogen synthetase kinase-3 by insulin-mediated by protein kinase B.
Nature.
1995;
378
785-789
- 27
Tanti J F, Grillo S, Gremeau T, Coffer P J, Van Obberghen E, Le Marchand-Brustel Y.
Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes.
Endocrinology.
1997;
138
2005-2010
- 28
Harano Y, Ohgaku S, Kosugi K, Yasuda H, Nakano T, Kobayashi M, Hiduka H, Izumi K,
Kashiwagi A, Shigeta Y.
Clinical significance of altered insulin sensitivity in diabetes mellitus assessed
by glucose, insulin and somatostatin infusion.
J Clin Endocrinol Meta.
1981;
52
982-987
- 29
Perez-Martin A, Raynaud E, Hentgen C, Bringer J, Mercier J, Brun J F.
Simplified measurement of insulin sensitivity with the minimal model procedure in
type 2 diabetic patients without the measurement of insulinemia.
Horm Metab Res.
2002;
34
102-106
- 30
Levine R L, Garland D, Oliver C W. et al .
Determination of carbonyl content in oxidatively modified proteins.
Methods Enzymol.
1990;
186
464-478
- 31
Reznick A Z, Packer L.
Oxidative damage to proteins: spectrophotometric method for carbonyl assay.
Methods Enzymol.
1994;
233
357-363
- 32
Lowry O H, Rosebrough N J, Farr A L, Randall R J.
Protein Measurement with the folin phenol reagent.
J Biol Chem.
1951;
193
265-275
- 33
Shepherd P R, Withors D J, Siddle K.
Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling.
Biochem J.
1998;
333
471-490
- 34
Davies K J.
Protein damage and degredation by oxygen radicals. I. General aspects.
J Biol Chem.
1987;
262
9895-9901
- 35
Fucci L, Oliver C N, Coon M, Stadtman E R.
Inactivation of key metabolic enzymes by mixed function oxidation reaction: possible
implication in protein turnover and aging.
Proc Natl Acad Sci USA.
1983;
80
1521-1525
- 36
Oliver C N, Starke-Reed P E, Stadtman E R, Liu G J, Carey J M, Floyd R A.
Oxidative damage to brain protein, loss of glutamine synthetase activity and production
of free radical during ischemia/reperfusion-induced injury to gerbil brain.
Proc Natl Acad Sci USA.
1990;
87
5144-5147
- 37
Jacob S, Streeper R S, Fogt D L, Hokama J Y, Tritschler H J, Dietze G L, Henriksen E J.
The antioxidant α-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant
rat skeletal muscle.
Diabetes.
1996;
45
1024-1029
- 38
Yu C, Chew Y, Cline G W. et al .
Mechanism by which fatty acids inhibits insulin activation of insulin receptor substrate-1
(IRS-1) associated phosphatidyl inositol 3-kinase activity in muscle.
J Biol Chem.
2002;
277
50230-50236
- 39
Kosaki A, Yamada K, Suga A, Kuzuya H.
14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin
stimulated phosphatidyl inositol 3-kinase activity in 3T3L1 adipocytes.
J Biol Chem.
1998;
273
940-944
- 40
Burgering B, Coffer P.
Protein kinase B(c-Akt) in phospholidylinositol-3-OH kinase signal transduction.
Nature.
1995;
376
599-602
- 41
Frank T, Yang S, Chan T, Datta K, Kazlauskas A, Morrison D, Kaplan D, Tsichlis P.
The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated
phosphotidylinositol 3-kinase.
Cell.
1995;
81
727-736
- 42
Kohn A, Kovacina K, Roth R.
Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing
serthr kinase.
EMBO J.
1995;
14
4288-4295
- 43
Didichenko S, Tilton B, Hemmings B, Ballmer-Hofer K, Thelen M.
Constitutive activation of protein kinase B and phosphorylation of p47 phox by a membrane-targeted
phosphoinositide 3-kinase.
Curr Biol.
1996;
6
1271-1278
- 44
Klippel A, Reinhard C, Kavanaugh W, Appell G, Escobedo M, Williams L.
Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple
signal transducting kinase pathways.
Mol Cell Biol.
1996;
16
4117-4127
- 45
Wang Q, Somwar R, Bilan P J, Liu Z, Jin J, Woodgeth J R, Klip A.
Protein kinase B Akt participates in GLUT4 translocation by insulin in L6 myoblasts.
Mol Cell Biol.
1999;
19
4008-4018
- 46
Song X, Kawano Y, Krook A, Ryder J, Efendic S, Roth R, Wallberg-Henriksson H, Zierath J.
Muscle fiber type-specific defects in insulin signal transduction to glucose transport
in diabetic GK rats.
Diabetes.
1999;
48
664-670
- 47
Nawano M, Ueta K, Oku A, Arakawa K, Saito A, Funaki M, Anai M, Kikuchi M, Oka Y, Asano T.
Hyperglycemia impairs the insulin signalling step between PI 3-kinase and Akt/PKB
activation in ZDF rat liver.
Biochem Biophys Res Commun.
1999;
266
252-256
- 48
Oku A, Nawano M, Ueta K. et al .
Inhibitory effect of hyperglycemia on insulin-induced Akt/protein kinase B activation
in skeletal muscle.
Am J Physiol.
2001;
280
E816-E-825
- 49
Krook A, Roth R A, Jiang X J, Zierath J R, Wallberg-Henriksson H.
Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects.
Diabetes.
1998;
47
1281-1286
- 50
Cohen P, Alessi D R, Cross D AE.
PDK1, one of the missing links in insulin signal transduction.
FEBS Lett.
1997;
410
3-10
- 51
Bellacosa A, Chan T O, Ahmed N N, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J,
Tsichlis P.
Akt activation by growth factor is a multiple-step process: the role of the PH domain.
Oncogene.
1998;
17
313-325
- 52
Downward J.
Lipid-regulated kinases: some common themes at last.
Science.
1998;
279
673-674
- 53
Phillay T S, Xiao S, Olefsky J M.
Glucose-induced phosphorylation of the insulin receptor. Functional effects and characterization
of phosphorylation sites.
J Clin Invest.
1996;
97
613-620
- 54
Muller H K, Kellerer M, Ermel B, Muhlhofer A, Obermaier K B, Vogt B, Haring H U.
Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tynosine.
Kinase resistance in rat fat cells.
Diabetes.
1991;
40
1440-1448
- 55
Ruderman N B, Saha A K, Vavvas D, Heydrick S J, Kurowski T G.
Lipid abnormalities in muscle of insulin-resistant rodents: the malonyl COA hypothesis.
Ann NY Acad Sci.
1996;
827
221-230
- 56
Laybutt D R, Schmitz-Peiffer C, Saha A K, Ruderman N B, Chisholm D, Biden T, Kraegen E W.
Activation of protein kinase C may contribute to muscle insulin-resistance induced
by lipid accumulation during chronic glucose infusion in rats (Abstract).
Diabetes.
1997;
46
241A
- 57
Barthel A, Nakatani K, Dandekar A, Roth R A.
Protein kinase C modulates the insulin-stimulated increase in Akt 1 and Akt 3 activity
in 3T3-L1 adipocytes.
Biochem Biophys Res Commun.
1998;
243
509-513
- 58
Tirosh A, Potashnik R, Bashan N, Rudich A.
Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor
substrate-1 and phosphotidylinositol 3-kinase in 3T3 adipocytes: A putative cellular
mechanism for impaired protein kinase B activation and GLUT4 translocation.
J Biol Chem.
1999;
274
10595-10602
- 59
Hansen L L, Ikeda Y, Olsen G S, Bush A K, Mosthaf L.
Insulin signalling is inhibited by micromolar concentrations of H2O2. Evidence for a role of H2O2 in tumor necrosis factor alpha-mediated insulin resistance.
J Biol Chem.
1999;
274
25 078-25 084
- 60
Maddux B A, See W, Lawrence J C, Goldfine A L, Goldfine I D, Evans J L.
Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells
by micromolar concentrations of α-lipoic acid.
Diabetes.
2001;
50
404-410
- 61
Rosen P, Naworth P P, King G, Moller W, Tritschler H J, Packer L.
The role of oxidative stress in the onset and progression of diabetes and its complications.
Diabetes Metab Res Rev.
2001;
17
189-212
- 62
Brownlee M.
Biochemistry and Molecular cell biology of diabetic complications.
Nature.
2001;
414
813-820
- 63
Gopaul N K, Manraj M D, Hebe A, Lee K wai, Johnston A, Carrier M J, Anggard E E.
Oxidative stress could precede endothelial dysfunction and insulin resistance in Indian
Mauritians with impaired glucose metabolism.
Diabetologia.
2001;
44
706-712
- 64
Biewenga G P, Haenen G R, Bast A.
The Pharmacology of the antioxidant lipoic acid.
Gen Pharmacol.
1997;
29
315-331
- 65
Packer L, Witt E H, Tritchler H J.
Alpha-lipoic acid as a biological antioxidant free.
Radic Biol Med.
1995;
19
227-250
- 66
Haugaard N, Haugaard E S.
Stimulation of glucose utilization by thioctic acid in rat diaphragm incubated in
vitro.
Biochem Biophys Acta.
1970;
222
583-586
- 67
Ramrath S, Tritschler H J, Eckel J.
Stimulation of cardiac glucose transport by thioctic acid and insulin.
Horm Metab Res.
1999;
31
632-635
- 68
Evans J L, Goldfine I D.
α-lipoic acid: a multifactorial antioxidant that improves insulin sensitivity in patients
with type 2 diabetes. Diabetes.
Technol Thr.
2000;
2
401-414
- 69
Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, Tritschler H, Wessel K,
Bashan N.
Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetes
rats.
Metabolism.
1997;
46
763-768
- 70
Fujimoto W Y.
The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus.
Am J Med.
2000;
108 (suppl 6a)
9S-14S
Prof. M. S. Bitar
Dept. of Pharmacology & Toxicology
Faculty of Medicine, Kuwait University, Kuwait ·
Telefon: +965 (531) 2300, 6364
Fax: +965 (531) 8454
eMail: milad@hsc.kuniv.edu.kw