Subscribe to RSS
DOI: 10.1055/s-2004-825863
Klinischer Stellenwert von Rekruitmentmanövern bei Patienten mit akutem Lungenversagen
Clinical Impact of Recruitment Maneuvers in Patients with Acute Respiratory Distress SyndromePublication History
Publication Date:
20 August 2004 (online)
Zusammenfassung
Die Anwendung von Rekruitmentmanövern wird als additive Therapiestrategie in der Behandlung des akuten Lungenversagens empfohlen, um eine rasche Öffnung atelektatischer Lungenkompartimente zu erzielen und danach die rekrutierten Alveolen durch Applikation eines adäquat hohen positiven endexpiratorischen Drucks (PEEP) offen zu halten. Die schnelle Rekrutierung von Atelektasen durch Rekruitmentmanöver führte mitunter zu einer deutlichen Verbesserung der Oxygenierung mit konsekutiver Reduktion der Beatmungsinvasivität. Obwohl in mehreren Studien über eine Verbesserung des Gasaustausches nach einem Rekruitmentmanöver berichtet wurde, bleibt diese Intervention nach wie vor Gegenstand kontroverser Diskussionen, vor allem im Zusammenhang mit einer lungenprotektiven Beatmungsstrategie. In diesem Übersichtsartikel diskutieren wir den pathophysiologischen Hintergrund, begünstigende Faktoren für die Effektivität eines Rekruitmentmanövers und dessen klinischen Stellenwert im Lichte aktueller Publikationen. Die Effektivität eines Rekruitmentmanövers ist vor allem abhängig von der Höhe des Rekrutierungsdrucks und des applizierten PEEP vor und nach dem Rekruitmentmanöver, der Ätiologie und dem Stadium des akuten Lungenversagens, der Atemmechanik des respiratorischen Systems bzw. der Höhe des transpulmonalen Drucks sowie von der Lagerung des Patienten. Vor dem Hintergrund der derzeitigen Literatur sind Rekruitmentmanöver als eine „Rescue-Therapie” in der Frühphase eines lebensbedrohenden hypoxämischen Lungenversagens anzusehen, wenn trotz einer lungenprotektiven Beatmungsstrategie und additiver Maßnahmen wie Lagerungstherapie und Applikation von inhalativen Vasodilatatoren kein adäquater Gasaustausch zu erzielen ist.
Abstract
In patients with acute respiratory distress syndrome (ARDS), recruitment maneuvers have been proposed as an adjunct to mechanical ventilation to open up atelectasis and to keep these alveoli open by the application of adequate high levels of positive end-expiratory pressure (PEEP). Though several studies reported that the responsiveness to recruitment maneuvers resulted in a marked improvement of oxygenation with a concomitant decrease in airway pressure and/or inspiratory fraction of oxygen, the performance of recruitment maneuvers still remains a matter of dispute, especially in patients ventilated with a lung protective ventilation strategy. In this review we discuss the pathophysiological background, factors affecting the responsiveness to recruitment maneuvers and their clinical impact in the light of recently published studies. Successful recruitment depends on several factors like the applied recruitment pressure, the level of PEEP set before and after the recruitment maneuver, the stage and the underlying disease of the ARDS, chest wall mechanics and the transpulmonary pressure as well as the positioning of the patient. Regarding the current literature, recruitment maneuvers may be considered as a rescue therapy in the early stage of severe hypoxemic lung failure, if a lung protective ventilation strategy and other additive adjuncts like prone positioning or the application of inhaled vasodilators failed to induce adequate gas exchange.
Schlüsselwörter
Akutes Lungenversagen · alveoläres Rekruitment · Rekruitmentmanöver · Konzept der offenen Lunge · lungenprotektive Beatmung
Key words
Acute respiratory distress syndrome · alveolar recruitment · recruitment maneuver · open lung approach · lung protective ventilation
Literatur
- 1 McIntyre R C, Pulido E J, Bensard D D, Shames B D, Abraham E. Thirty years of clinical trials in acute respiratory distress syndrome. Crit Care Med. 2000; 28 3314-3331
- 2 Koleff M, Schuster D. The acute respiratory distress syndrome. N Engl J Med. 1995; 323 27-37
- 3 Lewis J, Jobe A. Surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis. 1993; 147 218-233
- 4 Amato M BP, Barbas C SV, Medeiros D M, Magaldi R B, Schettino G P, Lorenzi-Filho G, Kairalla R A, Deheinzelin D, Munoz C, Oliveira R, Takagaki T Y, Carvalho C RR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998; 338 347-354
- 5 Brower R G, Matthay M A, Morris A, Schoenfeld D, Thompson T, Wheeler A,. and the Acute Respiratory Distress Syndrome Network . Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342 1301-1308
- 6 Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992; 18 319-321
- 7 Vazquez de Anda G F, Lachmann B. Protecting the lung during mechanical ventilation with the open lung concept. Acta Anaesthesiol Scand (Suppl). 1998; 112 (42) 63-66
- 8 Engelmann L. Das Open-Lung-Konzept. Anaesthesist. 2000; 49 1046-1053
- 9 Hickling K. Best Compliance during a Decremental, But Not Incremental, Positive End-Expiratory Pressure Trial Is Related to Open-Lung Positive End-Expiratory Pressure. A Mathematical Model of Acute Respiratory Distress Syndrome Lungs. Am J Respir Crit Care Med. 2001; 163 69-78
- 10 Richard J, Brochard L, Vandelet P h, Breton L, Maggiore S, Jonson B, Clabault K, Leroy J, Bonmarchand G. Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med. 2003; 31 89-92
- 11 Richard J, Maggiore S, Jonson B, Mancebo J, Lemaire F, Brochard L. Influence of tidal volume on alveolar recruitment. Am J Respir Crit Care Med. 2001; 163 1609-1613
- 12 Böhm S, Suarez Sipmann F, Lachmann B. Das Konzept der offenen Lunge. Intensivmed. 1999; 36:Suppl.1 31-33
- 13 Lapinsky S E, Aubin M, Metha S, Boiteau P, Slutsky A S. Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med. 1999; 25 1297-1301
- 14 Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L. Sigh in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 1999; 159 872-880
- 15 Lim C M, Koh Y, Park W, Chin J Y, Shim T S, Lee S D, Kim W S, Kim D S, Kim W D. Mechanistic scheme and effect of ”extended sigh” as a recruitment maneuver in patients with acute respiratory distress syndrome: A preliminary study. Crit Care Med. 2001; 29 1255-1260
- 16 Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky A, Ranieri M. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002; 96 795-802
- 17 Villagra A, Ochagavia A, Vatua S, Murias G, Fernandez M, Lopez Aguilar J, Fernandez R, Blanch L. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002; 165 165-170
- 18 The ARDS Clinical Trials Network; National Heart, Lung, and Blood Institute, National Institutes of Health . Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med. 2003; 31 2592-2597
- 19 Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, Fitzgerald R D. Recruitment maneuvers following a positive end-expiratory pressure trial do not induce sustained effects in adult respiratory distress syndrome. Anesthesiology. 2004; 100 in press
- 20 Ranieri V, Giuliani R, Fiore T, Dambrosio M, Milic Emili J. Volume Pressure Curve of the respiratory system predicts effects of PEEP in ARDS: ”Occlusion” versus ”Constant Flow” Technique. Am J Respir Crit Care Med. 1994; 149 19-27
- 21 Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascheroni D, Torresin A. Relationship between lung computer tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology. 1988; 69 824-832
- 22 Kunst P W, Böhm S H, Vazquez de Anda G, Amato M B, Lachmann B, Postmus P E, de Vries P M. Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med.. 2000; 28 178-183
- 23 Rimensberger P C, Cox P N, Frndova H, Bryan A C. The open lung during small tidal volume ventilation: concepts of recruitment and ”optimal“ positive end-expiratory pressure. Crit Care Med. 1999; 27 1946-1952
- 24 Houmes R JM, Bos J AH, Lachmann B. Effect of different ventilator settings on lung mechanics: with special reference to the surfactant system. Appl Cardiopulm Pathophysiol. 1994; 5 117-127
- 25 Van der Kloot T, Blanch L, Youngblood A, Weinert C, Adams A, Marini J, Shapiro R, Nahum A. Recruitment maneuvers in three experimental models of acute lung injury. Am J Respir Crit Care. 2000; 161 1485-1494
- 26 Foti G, Cereda M, Sparacino M E, de Marchi L, Villa F, Pesenti A. Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med. 2000; 26 501-507
-
27 Marini J J, Amato M B.
Lung recruitment during ARDS. In: Marini JJ, Evans TW (eds) Acute lung injury. Berlin; Springer 1998: 236-257 - 28 Sjöstrand U H, Lichtwarck-Aschoff M, Nielsen J B, Markström A, Larsson A, Svensson B A, Wegenius G A, Nordgren K A. Different ventilatory approaches to keep the lung open. Intensive Care Med. 1995; 21 310-318
- 29 Fujino Y, Goddon S, Dolhnikoff M, Hess D, Amato M, Kacmarek R. Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome. Crit Care Med. 2001; 29 1579-1586
- 30 Medoff B, Harris R, Kesselmann H, Venegas J, Amato M, Hess D. Use of recruitment maneuvers and high positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med. 2000; 28 1210-1216
- 31 Marshall R P, Bellingan G, Webb S, Puddicombe A, Goldsack N, McAnulty R J, Laurent G J. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med. 2000; 162 1783-1788
- 32 Gattinoni L, Pelosi P, Suter P M, Pedoto A, Vercesi A, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Am J Respir Crit Care Med. 1998; 158 3-11
- 33 Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini J, Gattinoni L. Recruitment and derecruitment during acute respiratory failure. A clinical study. Am J Respir Crit Care Med. 2001; 164 131-140
- 34 Lim C M, Jung H, Koh Y, Lee J S, Shim T S, Lee S D, Kim W S, Kim W S, Kim D S, Kim W D. Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit Care Med. 2003; 31 411-418
- 35 Puybasset L, Gusman P, Muller J C, Cluzel P, Coriat P, Rouby J,. and the CT Scan ARDS Study Group . Regional distribution of gas and tissue in acute respiratory distress syndrome. III: Consequences for the effects of positive end-expiratory pressure. Intensive Care Med. 2000; 26 1215-1227
- 36 Cakar N, Akinci O, Tugrul S, Ozcan P E, Esen F, Eraksoy H, Cagatay A, Telci L, Nahum A. Recruitment maneuver: Does it promote bacterial translocation?. Crit Care Med. 2002; 30 2103-2106
- 37 Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A. Impact of positive endexpiratory pressure on chest wall and lung pressure volume curve in acute respiratory failure. Am J Respir Crit Care Med. 1997; 156 846-854
- 38 Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: Respective effects of high airway pressure. Am Rev Respir Dis. 1988; 137 159-1164
- 39 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970; 28 596-608
- 40 Bachofen H, Schürch S, Weibel E R. Experimental hydrostatic pulmonary edema in rabbit lung. Barrier lesions. Am Rev Respir Dis. 1993; 147 997-1004
- 41 Tremblay L, Slutsky A. Ventilator induced lung injury: from barotraumas to biotrauma. Proc-Assoc-Am-Physicians. 1998; 110 482-488
- 42 Uhlig S, Ranieri M, Slutsky A S. Biotrauma hypothesis of ventilator induced lung injury. Am J Respir Crit Care Med. 2003; 167 467-1471
- 43 Ranieri V M, Suter P M, Tortorella C, de Tullio R, Dayer J M, Brienza A, Bruno F, Slutsky A S. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999; 282 54-61
- 44 Slutsky A S, Tremblay L N. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998; 157 1721-1725
- 45 Mols G, Hermle G, Fries G, Benzing A, Lichtwarck-Aschoff M, Geiger K, Guttmann J. Different strategies to keep the lung open: a study in isolated perfused rabbit lungs. Crit Care Med. 2002; 30 1598-1604
- 46 Gattinoni L, Pelosi P, Crotti S, Valenza F. Effects of positive end-expiratory pressure on regional distribution tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995; 151 1807-1814
- 47 Mutoh T, Guest R J, Lamm W J, Albert R K. Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am Rev Respir Dis. 1992; 146 300-306
- 48 Lamm W J, Graham M M, Albert R K. Mechanisms by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994; 150 184-193
- 49 Pappert D, Rossaint R, Slama K, Gruning T, Falke K J. Influence of positioning on ventilation-perfusion relationships in severe adult respiratory distress syndrome. Chest. 1994; 106 1511-1516
- 50 Cakar N, van der Kloot T, Youngblood M, Adams A, Nahum A. Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am J Respir Crit Care Med. 2000; 161 1949-1956
- 51 Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamberoni C h, Colombo G, Bigatello L M, Gattinoni L. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003; 167 521-527
- 52 Marini J J. Efficacy of lung recruiting maneuvers: It`s all relative. Crit Care Med. 2003; 31 641-642
- 53 Musch G, Harris R S, Vidal Melo M F, O'Neill K R, Layfield J D, Winkler T, Venegas J G. Mechanisms by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology. 2004; 100 323-330
-
54 Gattinoni L, Chiumello D, Pelosi P.
Chest wall mechanics in ARDS . In: Slutsky AS, Brochard L (eds.) Mechanical Ventilation. Berlin; Springer 2004: 275-286 - 55 Bein T, Kuhr L P, Bele S, Ploner F, Keyl C, Taeger K. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002; 28 554-558
- 56 Claesson J, Lehtipalo S, Winso O. Do lung recruitment maneuvers decrease gastric mucosal perfusion. Intensive Care Med. 2003; 29 1314-1321
- 57 Gattinoni L, Vagginelli F, Carlesso E, Taccone P, Conte V, Chiumello D, Valenza F, Caironi P, Pesenti A. for the Prone-Supine Study Group . Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003; 31 2727-2733
OA Dr. Wolfgang Oczenski
Abteilung für Anästhesie und Intensivmedizin, Ludwig Boltzmann Institut für Medizinökonomie in Anästhesie und Intensivmedizin
Krankenhaus der Stadt Wien Lainz · Wolkersbergenstraße 1 · A-1130 Wien
Email: wolfgang.oczenski@wienkav.at