Zusammenfassung
Die Perfusions-MRT hat sich in den vergangenen Jahren in der klinischen Routine etabliert.
Sie ermöglicht es, Veränderungen des kapillären Netzwerks und des kapillären Blutflusses
zu beurteilen. Daher ist diese Methode für viele neuroradiologische Fragestellungen
interessant. In diesem Beitrag wird die Methodik ausführlich dargestellt, wobei dem
Leser vor allem die Aspekte vermittelt werden sollen, die bei der praktischen Durchführung
von Messung und Auswertung zu beachten sind. Im zweiten Teil werden die wesentlichen
Anwendungsgebiete der Perfusions-MRT dargestellt und es wird beschrieben, wie sich
die aus der Perfusions-MRT berechneten Parameter bei unterschiedlichen Erkrankungen
verändern. Dabei werden auch Hinweise auf mögliche Fallstricke gegeben, die für Fehldiagnosen
verantwortlich sein können.
Summary
Perfusion MRI has recently been established in clinical routine. It allows monitoring
pathologic changes of the capillary network and the capillary blood flow. Therefore,
perfusion MRI can help to improve the diagnosis in a variety of cerebral diseases.
This paper describes the method, focussing on practical aspects that need to be considered
when performing data acquisition and postprocessing. The second part of the paper
presents the main areas of application and describes how different diseases change
the parameters calculated from perfusion MRI. Pitfalls as potential source of a false
diagnosis are discussed.
Key words
Magnetic resonance imaging - perfusion - contrast agent - cerebral ischemia - tumors
Literatur
- 1
Axel L.
Cerebal blood flow determination by rapid-sequence computed tomography.
Radiology.
1980;
137
679-686
- 2
Fisel C R, Ackerman J L, Buxton R B, Garrido L, Belliveau J W, Rosen B R, Brady T J.
MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical
simulations and applications to cerebral physiology.
Magn Reson Med.
1991;
17
336-347
- 3
Rosen B R, Belliveau J W, Vevea J M, Brady T J.
Perfusion imaging with NMR contrast agents.
Magn Reson Med.
1990;
14
249-265
- 4
Thompson H K, Starmer C F, Whalen R E, McIntosh H.
Indicator transit time considered as a gamma variate.
Circ Res.
1964;
14
502-515
- 5
Weisskoff R M, Chesler D, Boxerman J L, Rosen B R.
Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which
mean transit time?.
Magn Reson Med.
1993;
29
553-558
- 6
Ostergaard L, Sorensen A G, Kwong K K, Weisskoff R M, Gyldensted C, Rosen B R.
High resolution measurement of cerebral blood flow using intravascular tracer bolus
passages. Part II: Experimental comparison and preliminary results.
Magn Reson Med.
1996;
36
726-736
- 7
Ostergaard L, Weisskoff R M, Chesler D A, Gyldensted C, Rosen B R.
High resolution measurement of cerebral blood flow using intravascular tracer bolus
passages. Part I: Mathematical approach and statistical analysis.
Magn Reson Med.
1996;
36
715-725
- 8
Schreiber W G, Gueckel F, Stritzke H, Schmiedek P, Schwartz A, Brix G.
Cerebral blood flow and cerebrovascular reserve capacity: Estimation by dynamic magnetic
resonance imaging.
J Cereb Blood Flow Metab.
1998;
18
1143-1156
- 9
Miles K A.
Measurements of tissue perfusion by dynamic computed tomography.
Br J Radiol.
1991;
64
409-412
- 10
Calamante F, Gadian D G, Connelly A.
Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using
singular value decomposition.
Magn Reson Med.
2000;
44
466-473
- 11
Lythgoe D J, Ostergaard L, William S C, Cluckie A, Buxton-Thomas M, Simmons A, Markus H S.
Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility
contrast-enhanced magnetic resonance imaging.
Magn Reson Imaging.
2000;
18
1-11
- 12
Boxerman J L, Hamberg L M, Rosen B R, Weisskoff R M.
MR contrast due to intravascular magnetic susceptibility perturbations.
Magn Reson Med.
1995;
34
555-566
- 13
van Osch M J, Vonken E J, Bakker C J, Viergever M A.
Correcting partial volume artifacts of the arterial input function in quantitative
cerebral perfusion MRI.
Magn Reson Med.
2001;
45
477-485
- 14
Aronen H J, Gazit I E, Louis D N, Buchbinder B R, Pardo F S, Weisskoff R M, Harsh G R,
Cosgrove G R, Halpern E F, Hochberg F H, Rosen B R.
Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic
findings.
Radiology.
1994;
191
41-51
- 15
Heiland S, Kreibich W, Reith W, Benner T, Dörfler A, Forsting M, Sartor K.
Comparison of different EPI-sequence types in perfusion-weighted MR imaging: Which
one is the best?.
Neuroradiology.
1998;
40
216-222
- 16
Benner T, Heiland S, Erb G, Forsting M, Sartor K.
Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast
enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise.
Magn Reson Imaging.
1997;
15
307-317
- 17
Speck O, Chang L, DeSilva N M, Ernst T.
Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo
versus spin-echo techniques.
J Magn Reson Imaging.
2000;
12
381-387
- 18
Benner T, Reimer P, Erb G, Schuierer G, Heiland S, Fischer C, Geens V, Sartor K, Forsting M.
Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate
(Gadovist 1.0) in a double-blinded randomized dose-finding study.
J Magn Reson Imaging.
2000;
12
371-380
- 19
Heiland S, Sartor K.
Magnetresonanztomographie beim Schlaganfall - methodische Grundlagen und klinische
Anwendung.
RÖFO Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr.
1999;
171
3-14
- 20
Tombach B, Benner T, Reimer P, Schuierer G, Fallenberg E M, Geens V, Wels T, Sorensen A G.
Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually
controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L
gadobutrol.
Radiology.
2003;
226
880-888
- 21
Berchtenbreiter C, Bruening R, Wu R H, Penzkofer H, Weber J, Reiser M.
Comparison of the diagnostic information in relative cerebral blood volume, maximum
concentration, and subtraction signal intensity maps based on magnetic resonance imaging
of gliomas.
Invest Radiol.
1999;
34
75-81
- 22
Teng M M, Cheng H C, Kao Y H, Hsu L C, Yeh T C, Hung C S, Wong W J, Hu H H, Chiang J H,
Chang C Y.
MR perfusion studies of brain for patients with unilateral carotid stenosis or occlusion:
evaluation of maps of „time to peak” and „percentage of baseline at peak”.
J Comput Assist Tomogr.
2001;
25
121-125
- 23
Heiland S, Reith W, Forsting M, Sartor K.
How do concentration and dosage of the contrast agent affect the signal change in
perfusion-weighted magnetic resonance imaging? A computer simulation.
Magn Reson Imaging.
2001;
19
813-820
- 24
Schellinger P D, Fiebach J B, Jansen O, Ringleb P A, Mohr A, Steiner T, Heiland S,
Schwab S, Pohlers O, Ryssel H, Orakcioglu B, Sartor K, Hacke W.
Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral
ischemia.
Ann Neurol.
2001;
49
460-469
- 25
Baird A E, Benfield A, Schlaug G, Siewert B, Lovblad K O, Edelman R R, Warach S.
Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted
magnetic resonance imaging.
Ann Neurol.
1997;
41
581-589
- 26
Schellinger P D, Jansen O, Fiebach J B, Pohlers O, Ryssel H, Heiland S, Steiner T,
Hacke W, Sartor K.
Feasibility and practicality of MR imaging of stroke in the management of hyperacute
cerebral ischemia.
AJNR Am J Neuroradiol.
2000;
21
1184-1189
- 27
Jansen O, Knauth M, Sartor K.
Advances in clinical neuroradiology.
Akt Neurologie.
1999;
26
1-7
- 28
Marks M P, Tong D, Beaulieu C, Albers G W, de Crespigny A, Moseley M E.
Evaluation of early reperfusion and IV rt-PA therapy using diffusion- and perfusion-weighted
MRI.
Neurology.
1999;
52
1792-1798
- 29
Tsuchida C, Yamada H, Maeda M, Sadato N, Matsuda T, Kawamura Y, Hayashi N, Yamamoto K,
Yonekura Y, Ishii Y.
Evaluation of peri-infarcted hypoperfusion with T2*-weighted dynamic MRI.
J Magn Reson Imaging.
1997;
7
518-522
- 30
Kempski O, Behmanesh S.
Endothelial cell swelling and brain perfusion.
J Trauma.
1997;
42 (Suppl)
38-40
- 31
Reith W, Forsting M, Vogler H, Heiland S, Sartor K.
Contrast enhanced MR for early detection of cerebral ischemia: An experimental study.
Am J Neuroradiol.
1995;
16
53-60
- 32
Simonsen C Z, Ostergaard L, Smith D F, Vestergaard-Poulsen P, Gyldensted C.
Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus
tracking.
J Magn Reson Imaging.
2000;
12
411-416
- 33
Fiehler J, von Bezold M, Kucinski T, Knab R, Eckert B, Wittkugel O, Zeumer H, Rother J.
Cerebral blood flow predicts lesion growth in acute stroke patients.
Stroke.
2002;
33
2421-2425
- 34
Grandin C B, Duprez T P, Smith A M, Oppenheim C, Peeters A, Robert A R, Cosnard G.
Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood
flow and volume in prediction of infarct growth in hyperacute stroke.
Stroke.
2001;
32
1147-1153
- 35
Neumann-Haefelin T, Wittsack H J, Wenserski F, Siebler M, Seitz R J, Mödder U, Freund H J.
Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.
Stroke.
1999;
30
1591-1597
- 36
Reith W, Heiland S, Erb G, Benner T, Forsting M, Sartor K.
Dynamic contrast-enhanced T2*-weighted MRI in patients with cerebrovascular disease.
Neuroradiology.
1997;
39
250-257
- 37
Dörfler A, Eckstein H H, Eichbaum M, Heiland S, Benner T, Allenberg J R, Forsting M.
Perfusion-weighted magnetic resonance imaging in patients with carotid artery disease
before and after carotid endarteriectomy.
J Vasc Surg.
2001;
34
587-593
- 38
Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman T S, Wannenmacher M.
Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced
MRI (DSC-MRI) is predictive of local tumor control after radiation therapy.
Int J Radiat Oncol Biol Phys.
2001;
51
478-482
- 39
Hartmann M, Heiland S, Harting I, Tronnier V M, Sommer C, Ludwig R, Sartor K.
Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted
magnetic resonance imaging.
Neurosci Lett.
2003;
338
119-122
- 40
Knopp E A, Cha S, Johnson G, Mazumdar A, Golfinos J G, Zagzag D, Miller D C, Kelly P J,
Kricheff I I.
Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging.
Radiology.
1999;
211
791-798
- 41
Law M, Cha S, Knopp E A, Johnson G, Arnett J, Litt A W.
High-grade gliomas and solitary metastases: differentiation by using perfusion and
proton spectroscopic MR imaging.
Radiology.
2002;
222
715-721
- 42
Warach S, Levin J M, Schomer D L, Holman B L, Edelman R R.
Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging.
AJNR Am J Neuroradiol.
1994;
15
965-968
- 43
Wenz F, Rempp K, Brix G, Knopp M V, Gückel F, Hess T, van Kaick G.
Age dependency of the regional cerebral blood volume (rCBV) measured with dynamic
susceptibility contrast MR imaging (DSC).
Magn Reson Imaging.
1996;
14
157-162
- 44
Bozzao A, Floris R, Baviera M E, Apruzzese A, Simonetti G.
Diffusion and perfusion MR imaging in cases of Alzheimer"s disease: correlations with
cortical atrophy and lesion load.
AJNR Am J Neuroradiol.
2001;
22
1030-1036
Prof. Dr. rer. nat. Sabine Heiland
Sektion Experimentelle Neuroradiologie, Universitätsklinikum Heidelberg
Im Neuenheimer Feld 400 · 69120 Heidelberg
Phone: +49(0)6221 56-7566
Fax: +49(0)6221 56-4673
Email: sabine_heiland@med.uni-heidelberg.de