Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like
peptide-1 (GLP-1) are secreted from the intestinal K- and L-cells, respectively, but
are immediately subject to rapid degradation. GLP-1 is found in two active forms,
amidated GLP-1 (7-36) amide and glycine-extended GLP-1 (7-37), while GIP exists as
a single 42 amino acid peptide. The aminopeptidase, dipeptidyl peptidase IV (DPP IV),
which is found in the endothelium of the local capillary bed within the intestinal
wall, is important for the initial inactivation of both peptides, with GLP-1 being
particularly readily degraded. DPP IV cleavage generates N-terminally truncated metabolites
(GLP-1 (9-36) amide / (9-37) and GIP (3-42)), which are the major circulating forms.
Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific
manner. However, other endogenous metabolites have not yet been identified, possibly
because existing assays are unable either to recognize them or to differentiate them
from the primary metabolites. Neutral endopeptidase 24.11 has been demonstrated to
be able to degrade GLP-1 in vivo, but its relevance in GIP metabolism has not yet been established. Intact GLP-1 and
GIP are inactivated during passage across the hepatic bed by DPP IV associated with
the hepatocytes, and further degraded by the peripheral tissues, while the kidney
is important for the final elimination of the metabolites.
Key words
Glucagon-like peptide-1 - Glucose-dependent insulinotropic polypeptide - Gut hormone
- Incretin - Dipeptidyl peptidase IV - Neutral endopeptidase 24.11
References
- 1
Buchan A M, Polak J M, Capella C, Solcia E, Pearse A G.
Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory
polypeptide (GIP) in man.
Histochemistry.
1978;
56
37-44
- 2
Damholt A B, Kofod H, Buchan A M.
Immunocytochemical evidence for a paracrine interaction between GIP and GLP-1-producing
cells in canine small intestine.
Cell Tissue Res.
1999;
298
287-293
- 3
Mortensen K, Christensen L L, Holst J J, Ørskov C.
GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine.
Regul Pept.
2003;
114
189-196
- 4
Eissele R, Göke R, Willemer S, Harthus H P, Vermeer H, Arnold R, Göke B.
Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig
and man.
Eur J Clin Invest.
1992;
22
283-291
- 5
Bell G I, Santerre R F, Mullenbach G T.
Hamster preproglucagon contains the sequence of glucagon and two related peptides.
Nature.
1983;
302
716-718
- 6
Lund P K, Goodman R H, Dee P C, Habener J F.
Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged
in tandem.
Proc Natl Acad Sci USA.
1982;
79
345-349
- 7
Ørskov C, Rabenhoj L, Wettergren A, Kofod H, Holst J J.
Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide
I in humans.
Diabetes.
1994;
43
535-539
- 8
Mojsov S, Weir G C, Habener J F.
Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is
a potent stimulator of insulin release in the perfused rat pancreas.
J Clin Invest.
1987;
79
616-619
- 9
Hansen L, Hartmann B, Bisgaard T, Mineo H, Jorgensen P N, Holst J J.
Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated
perfused porcine ileum.
Am J Physiol.
2000;
278
E1010-E1018
- 10
Deacon C F, Wamberg S, Bie P, Hughes T E, Holst J J.
Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV
suppresses meal-induced incretin secretion in dogs.
J Endocrinol.
2002;
172
355-362
- 11
Ørkov C, Wettergren A, Holst J J.
Biological effects and metabolic rates of glucagonlike peptide-1 7 - 36 amide and
glucagonlike peptide-1 7 - 37 in healthy subjects are indistinguishable.
Diabetes..
1993;
42
658-661
- 12
Wettergren A, Pridal L, Wojdermann M, Holst J J.
Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects
(cephalic phase acid secretion) and stability in plasma in humans.
Regul Pept.
1998;
77
83-87
- 13
Deacon C F, Johnsen A H, Holst J J.
Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally
truncated peptide that is a major endogenous metabolite in vivo.
J Clin Endocrinol Metab.
1995;
80
952-957
- 14
Kieffer T J, McIntosh C H, Pederson R A.
Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like
peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.
Endocrinology.
1995;
136
3585-3596
- 15
Pridal L, Deacon C F, Kirk O, Christensen J V, Carr R D, Holst J J.
Glucagon-like peptide-1(7-37) has a larger volume of distribution than glucagon-like
peptide-1(7-36) amide in dogs and is degraded more quickly in vitro by dog plasma.
Eur J Drug Metab Pharmacokinet.
1996;
21
51-59
- 16
Knudsen L B, Pridal L.
Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36)
amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic
receptor.
Eur J Pharmacol.
1996;
318
429-435
- 17
Pauly R P, Rosche F, Wermann M, McIntosh C H, Pederson R A, Demuth H U.
Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like
peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted
laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach.
J Biol Chem.
1996;
271
23222-23229
- 18
Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H, Mitani T, Kurono M,
Suzuki T, Tobe T, Imura H.
Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor.
Proc Natl Acad Sci USA.
1987;
84
7005-7008
- 19
Tseng C C, Jarboe L A, Landau S B, Williams E K, Wolfe M M.
Glucose-dependent insulinotropic peptide: structure of the precursor and tissue-specific
expression in rat.
Proc Natl Acad Sci USA.
1993;
90
1992-1996
- 20
Burhol P G, Jorde R, Waldum H L.
Radioimmunoassay of plasma gastric inhibitory polypeptide (GIP), release of GIP after
a test meal and duodenal infusion of bile, and immunoreactive plasma GIP components
in man.
Digestion.
1980;
20
336-345
- 21
Krarup T, Holst J J.
The heterogeneity of gastric inhibitory polypeptide in porcine and human gastrointestinal
mucosa evaluated with five different antisera.
Regul Pept.
1984;
9
35-46
- 22
Krarup T, Holst J J, Larsen K L.
Responses and molecular heterogeneity of IR-GIP after intraduodenal glucose and fat.
Am J Physiol..
1985;
249
E195-E200
- 23
Otte S C, Mutt V, McIntosh C HS, Brown J C.
Purification and amino acid composition of an 8000 dalton immunoreactive form of GIP.
Dig Dis Sci.
1984;
29 (Suppl)
63S (abstract)
- 24
Jörnvall H, Carlquist M, Kwauk S, Otte S C, McIntosh C H, Brown J C, Mutt V.
Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP).
FEBS Lett.
1981;
123
205-210
- 25
Deacon C F, Nauck M A, Meier J, Hucking K, Holst J J.
Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy
and in type 2 diabetic subjects as revealed using a new assay for the intact peptide.
J Clin Endocrinol Metab.
2000;
85
3575-3581
- 26
Nauck M A, Kleine N, Ørskov C, Holst J J, Willms B, Creutzfeldt W.
Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36
amide) in type 2 (non-insulin-dependent) diabetic patients.
Diabetologia.
1993;
36
741-744
- 27
Gutniak M K, Linde B, Holst J J, Efendic S.
Subcutaneous injection of the incretin hormone glucagon-like peptide 1 abolishes postprandial
glycemia in NIDDM.
Diabetes Care.
1994;
17
1039-1044
- 28
Nauck M A, Wollschlager D, Werner J, Holst J J, Ørskov C, Creutzfeldt W, Willms B.
Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with
NIDDM.
Diabetologia.
1996;
39
1546-1553
- 29
Buckley D I, Lundquist P.
Analysis of the degradation of insulinotropin [GLP-1 (7-37)] in human plasma and production
of degradation resistant analogs.
Reg Pept.
1992;
40
117 (abstract)
- 30
Mentlein R, Gallwitz B, Schmidt W E.
Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7
- 36) amide, peptide histidine methionine and is responsible for their degradation
in human serum.
Eur J Biochem.
1993;
214
829-835
- 31
Adelhorst K, Hedegaard B B, Knudsen L B, Kirk O.
Structure-activity studies of glucagon-like peptide-1.
J Biol Chem.
1994;
269
6275-6278
- 32
Mentlein R.
Dipeptidyl-peptidase IV (CD26) - role in the inactivation of regulatory peptides.
Regul Pept.
1999;
85
9-24
- 33
Deacon C F, Nauck M A, Toft-Nielsen M, Pridal L, Willms B, Holst J J.
Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly
degraded from the NH2-terminus in type II diabetic patients and in healthy subjects.
Diabetes.
1995;
44
1126-1131
- 34
Deacon C F, Wamberg S, Bie P, Hughes T E, Holst J J.
Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV
suppresses meal-induced incretin secretion in dogs.
J Endocrinol.
2002;
172
355-362
- 35
Vilsboll T, Agerso H, Krarup T, Holst J J.
Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients
and healthy subjects.
J Clin Endocrinol Metab.
2003;
88
220-224
- 36
Meier J J, Nauck M A, Kranz D, Holst J J, Deacon C F, Gaeckler D, Schmidt W E, Gallwitz B.
Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory
polypeptide in patients with chronic renal insufficiency and healthy control subjects.
Diabetes.
2004;
53
654-662
- 37
Hansen L, Deacon C F, Ørskov C, Holst J J.
Glucagon-like peptide-1-(7-36) amide is transformed to glucagon-like peptide-1-(9-36)
amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine
intestine.
Endocrinology.
1999;
140
5356-5363
- 38
Marguet D, Baggio L, Kobayashi T, Bernard A M, Pierres M, Nielsen P F, Ribel U, Watanabe T,
Drucker D J, Wagtmann N.
Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26.
Proc Natl Acad Sci USA.
2000;
97
6874-6879
- 39
Deacon C F, Hughes T E, Holst J J.
Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like
peptide 1 in the anesthetized pig.
Diabetes.
1998;
47
764-769
- 40
Deacon C F, Danielsen P, Klarskov L, Olesen M, Holst J J.
Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and
potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs.
Diabetes.
2001;
50
1588-1597
- 41
Balkan B, Kwasnik L, Miserendino R, Holst J J, Li X.
Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36
amide) concentrations and improves oral glucose tolerance in obese Zucker rats.
Diabetologia.
1999;
42
1324-1331
- 42
Pedersen R A, White H A, Schlenzig D, Pauly R P, McIntosh C H, Demuth H U.
Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl
peptidase IV inhibitor isoleucine thiazolidide.
Diabetes.
1998;
47
1253-1258
- 43
Ahrén B, Holst J J, Marensson H, Balkan B.
Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase
IV in mice.
Eur J Pharmacol.
2000;
404
239-245
- 44
Pospisilik J A, Stafford S G, Demuth H U, Brownsey R, Parkhouse W, Finegood D T, McIntosh C H,
Pederson R A.
Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained
improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell
glucose responsiveness in VDF (fa/fa) Zucker rats.
Diabetes.
2002;
51
943-950
- 45
Ahrén B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson P A, Sandqvist M,
Bavenholm P, Efendic S, Eriksson J W, Dickinson S, Holmes D.
Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study
period in type 2 diabetes.
Diabetes Care.
2002;
25
869-875
- 46
Ahrén B, Landin-Olsson M, Jansson P A, Svensson M, Holmes D, Schweizer A.
Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and
reduces glucagon levels in type 2 diabetes.
J Clin Endocrinol Metab.
2004;
89
2078-2084
- 47
Hupe-Sodmann K, McGregor G P, Bridenbaugh R, Goke R, Goke B, Thole H, Zimmermann B,
Voigt K.
Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36)
amide and comparison of the substrate specificity of the enzyme for other glucagon-like
peptides.
Regul Pept.
1995;
58
149-156
- 48
Hupe-Sodmann K, Goke R, Goke B, Thole H H, Zimmermann B, Voigt K, McGregor G P.
Endoproteolysis of glucagon-like peptide (GLP)-1 (7-36) amide by ectopeptidases in
RINm5F cells.
Peptides.
1997;
18
625-632
- 49
Plamboeck A, Holst J J, Carr R D, Deacon C F.
The degradation of glucagon-like peptide-1 involves both dipeptidyl peptidase IV and
neutral endopeptidase 24.11 in vivo.
Regul Pept.
2004;
122
6 (Abstract)
- 50
O’Dorisio T M, Sirinek K R, Mazzaferri E L, Cataland S.
Renal effects on serum gastric inhibitory polypeptide (GIP).
Metabolism.
1977;
26
651-656
- 51
Sirinek K R, O’Dorisio T M, Gaskill H V, Levine B A.
Chronic renal failure: effect of hemodialysis on gastrointestinal hormones.
Am J Surg.
1984;
148
732-735
- 52
Ørskov C, Andreasen J, Holst J J.
All products of proglucagon are elevated in plasma from uremic patients.
J Clin Endocrinol Metab.
1992;
74
379-384
- 53
Jorde R, Burhol P G, Gunnes P, Schulz T B.
Removal of IR-GIP by the kidneys in man, and the effect of acute nephrectomy on plasma
GIP in rats.
Scand J Gastroenterol.
1981;
16
469-471
- 54
Ruiz-Grande C, Alarcon C, Alcantara A, Castilla C, Lopez N ovoa, Villanueva-Penacarrillo M L,
Valverde I.
Renal catabolism of truncated glucagon-like peptide 1.
Horm Metab Res.
1993;
25
612-616
- 55
Deacon C F, Pridal L, Klarskov L, Olesen M, Holst J J.
Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized
pig.
Am J Physiol.
1996;
271
E458-E464
- 56 Simonsen L. A comparison of the metabolism of GLP-1 and exendin-4 - focus on the
role of the kidney. Masters thesis, Faculty of Health Sciences, University of Copenhagen
2004
- 57
Carone F A, Peterson D R, Flouret G.
Renal tubular processing of small peptide hormones.
J Lab Clin Med.
1982;
100
1-14
- 58
Emmanouel D S, Jaspan J B, Rubenstein A H, Huen A H, Fink E, Katz A I.
Glucagon metabolism in the rat.
J Clin Invest.
1978;
62
6-13
- 59
Hanks J B, Andersen D K, Wise J E, Putnam W S, Meyers W C, Jones R S.
The hepatic extraction of gastric inhibitory polypeptide and insulin.
Endocrinology.
1984;
115
1011-1018
- 60
Chap Z, O’Dorisio T M, Cataland S, Field J B.
Absence of hepatic extraction of gastric inhibitory polypeptide in conscious dogs.
Dig Dis Sci.
1987;
32
280-284
- 61
Elovson J.
Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat
liver plasma membrane glycoproteins.
J Biol Chem.
1980;
255
5807-5815
Dr. C. F. Deacon
Department of Medical Physiology, Panum Institute
Blegdamsvej 3 · 2200 Copenhagen N · Denmark
Phone: +45 3532 7523
Fax: +45 3532 7537
Email: deacon@mfi.ku.dk