Zusammenfassung
Einleitung: Musikerdystonien sind durch einen schmerzfreien Verlust der feinmotorischen Koordination
lang eingeübter Bewegungsfolgen gekennzeichnet. Als Pathomechanismen werden die Fusion
vergrößerter kortikaler sensomotorischer Repräsentationen oder eine Störung der lateralen
Hemmung in kortikalen und subkortikalen Schaltkreisen diskutiert. Um die Pathophysiologie
der Erkrankung weiter aufzuklären wurden bewegungskorrelierte kortikale Potenziale
(MRCPs) bei dystonen Musikern und bei gesunden Kontrollen abgeleitet. Methode: Neun Musiker mit einseitiger fokaler Hand-Dystonie wurden gesunden Musikern sowie
einer Kontrollgruppe von Nicht-Musikern gegenübergestellt. Es wurden MRCPs von 11
Elektrodenpositionen über bilateralen sensomotorischen Rindenfeldern abgeleitet. Die
Bewegungsaufgaben bestanden a) im Anschlag eines einzigen Tones mit dem Zeigefinger
und b) in der Ausführung einer komplexen Bewegungssequenz auf einem Steinway-Flügel.
Ergebnisse: Gesunde Musiker zeigten bei der komplexen Aufgabe gegenüber Nicht-Musikern eine stärkere
Aktivierung der prämotorischen Region vor Bewegungsbeginn und reduzierte motorische
Potenziale. Patienten zeigten gegenüber Musikern nur bei Ausführung der Aufgabe mit
der betroffenen Hand eine erhöhte späte NS'-Komponente vor Bewegungsbeginn. Diskussion: Die veränderten Aktivierungsmuster von gesunden Musikern passen zum Konzept der übungsinduzierten
Plastizität mit funktioneller und struktureller Vergrößerung relevanter kortikaler
Areale. Bei dystonen Musikern kann die übermäßige Aktivierung supplementär-motorischer
Areale vor Bewegungsbeginn für eine defiziente Inhibition in kortikalen-subkortikalen
Erregungsschleifen sprechen. Schlussfolgerung: Bei Musikern mit fokalen Dystonien zeigen MRCPs in einem aufgabenspezifischen Kontext
eine gestörte kortikale Inhibition vor Bewegungsbeginn.
Abstract
Introduction: Musician's focal dystonia is characterised by a painless loss of muscular control
in highly overpracticed skilled movements. Fusion of enlarged cortical sensory-motor
representations and loss of inhibitory neuronal interactions are discussed as underlying
pathology. In order to clarify which of these mechanisms contributes, movement related
cortical potentials (MRCPs) were recorded in dystonic musicians and healthy controls.
Methods: Nine right handed dystonic musicians were compared to an age matched group of healthy
musicians and to a group of non-musician controls. MRCPs were recorded from 11 electrode
locations placed over the sensorimotor cortex. Subjects had to play (i) a single note
and (ii) a complex motion pattern. All tasks were to execute on a grand piano. Results: Musicians compared with non-musicians showed higher premovement activity and a reduced
motor potential in the complex task. The activation pattern in the patients depended
on the performing hand. Compared to healthy musicians, task performance of the dystonic
hand was characterised by higher premovement potentials especially of the late NS'
component. Discussion: The results demonstrate use-dependent cortical plasticity in musicians compared to
non-musicians controls. In musicians' dystonia, the premotor and sensorimotor cortex,
rather then being inhibited as indicated by recent MRCP studies, may be overactive
during movement preparation with the affected hand when tested in a task-specific
realistic scenario. Conclusion: MRCPs in task-specific context reveal reduced inhibition in dystonic musicians.
Key words
Musician's cramp - focal dystonia - movement related cortical potentials - skilled
movements - motor systems
Literatur
- 1 Ostwald P F. Glenn Gould: The Ecstasy and Tragedy of Genius. New York; W. W. Norton
& Company 1998
- 2 Altenmüller E.
Das Ende vom Lied: Schumanns Verstummen am Klavier. In: Seither C (Hrsg) Tacet-Non Tacet-Festschrift für Peter Becker. Saarbrücken; Pfau-Verlag
2004: 234-256
- 3 Altenmüller E.
Fokale Dystonie. In: Nelle G, Mauritz H (Hrsg) Neurologische Rehabilitation. Stuttgart; Thieme Verlag
2004 (im Druck)
- 4
Altenmüller E.
Focal dystonia: advances in brain imaging and understanding of fine motor control
in musicians.
Hand Cli.
2003;
19
523-538
- 5
Byl N N, McKenzie A.
Treatment effectiveness for patients with a history of repetitive hand use and focal
hand dystonia: a planned, prospective follow-up study.
J Hand Ther.
2000;
13
289-301
- 6
Fletcher N A, Harding A E, Marsden C D.
The relationship between trauma and idiopathic torsion dystonia.
J Neurol Neurosurg Psychiatry.
1991;
54
713-717
- 7
Hallett M.
Dystonia: abnormal movements result from loss of inhibition.
Adv Neurol.
2004;
94
1-9
- 8
Nakashima K, Rothwell J C, Day B L, Thompson P D, Shannon K, Marsden C D.
Reciprocal inhibition between forearm muscles in patients with writer's cramp and
other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke.
Brain.
1989;
112 (Pt 3)
681-697
- 9
Rosenkranz K, Altenmüller E, Siggelkow S, Dengler R.
Alteration of sensorimotor integration in musician's cramp: impaired focusing of proprioception.
Clin Neurophysiol.
2000;
111
2040-2045
- 10
Mink J W.
The basal ganglia: focused selection and inhibition of competing motor programs.
Prog Neurobiol.
1996;
50
381-425
- 11
Bara-Jimenez W, Shelton P, Sanger T D, Hallett M.
Sensory discrimination capabilities in patients with focal hand dystonia.
Ann Neurol.
2000;
47
377-380
- 12
Lim V K, Altenmüller E, Bradshaw J L.
Focal dystonia: Current theories.
Hum Mov Sci.
2001;
20
875-914
- 13
Bara-Jimenez W, Catalan M J, Hallett M, Gerloff C.
Abnormal somatosensory homunculus in dystonia of the hand.
Ann Neurol.
1988;
44
828-831
- 14
Elbert T, Candia V, Altenmüller E, Rau H, Rockstroh B, Pantev C, Taub E.
Alteration of digital representations in somatosensory cortex in focal hand dystonia.
Neuroreport.
1998;
9
3571-3575
- 15
Byl N N, Merzenich M M, Jenkins W M.
A primate genesis model of focal dystonia and repetitive strain injury: Learning-induced
dedifferentiation of the representation of the hand in the primary somatosensory cortex
in adult monkeys.
Neurology.
1996;
47
508-520
- 16
Quartarone A, Bagnato S, Rizzo V. et al .
Abnormal associative plasticity in the human motor cortex in writer's cramp.
Brain.
2003;
126
2586-2596
- 17
Deuschl G, Toro C, Matsumoto J, Hallett M.
Movement-related cortical potentials in writer's cramp.
Ann Neurol.
1995;
38
862-868
- 18
Munte T F, Altenmüller E, Jancke L.
The musician's brain as a model of neuroplasticity.
Nat Rev Neurosci.
2002;
3
473-478
- 19
Oldfield R C.
The assessment and analysis of handedness: the Edinburgh inventory.
Neuropsychologia.
1971;
9
97-113
- 20
Drescher D, Parlitz D, Tiedemann J, Altenmüller E.
Ein neues Messinstrument zur Bestimmung und Darstellung von Fingerkräften auf der
Klaviertastatur.
Europiano.
1999;
2
23-28
- 21
McCarthy G, Wood C C.
Scalp distributions of event-related potentials: an ambiguity associated with analysis
of variance models.
Electroenceph clin Neurophysiol.
1985;
62
203-208
- 22
Hallett M.
Movement-related cortical potentials.
Electromyogr Clin Neurophysiol.
1994;
34
5-13
- 23
Amunts K, Schlaug G, Schleicher A. et al .
Asymmetry in the human motor cortex and handedness.
Neuroimage.
1996;
4
216-222
- 24
Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E.
Increased cortical representation of the fingers of the left hand in string players.
Science.
1995;
270
305-307
- 25
Krings T, Topper R, Foltys H. et al .
Cortical activation patterns during complex motor tasks in piano players and control
subjects. A functional magnetic resonance imaging study.
Neurosci Lett.
2000;
278
189-193
- 26
Hund-Georgiadis M, Cramon D Y von.
Motor-learning-related changes in piano players and non-musicians revealed by functional
magnetic-resonance signals.
Exp Brain Res.
1999;
125
417-425
- 27 Altenmüller E, Gerloff C.
Psychophysiology and the EEG. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Baltimore; Williams
and Wilkins 1998: 637-655
- 28
Gerloff C, Corwell B, Chen R, Hallett M, Cohen L G.
Stimulation over the human supplementary motor area interferes with the organization
of future elements in complex motor sequences.
Brain.
1997;
120 (Pt 9)
1587-1602
- 29
Shibasaki H, Sadato N, Lyshkow H. et al .
Both primary motor cortex and supplementary motor area play an important role in complex
finger movement.
Brain.
1993;
116 (Pt 6)
1387-1398
- 30 Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N. Slow cortical potentials
and behaviour. Baltimore; Urban und Schwarzenberg 1989
- 31
Jones R D, Donaldson I M, Parkin P J.
Impairment and recovery of ipsilateral sensory-motor function following unilateral
cerebral infarction.
Brain.
1989;
112 (Pt 1)
113-132
- 32
Colebatch J G, Gandevia S C.
The distribution of muscular weakness in upper motor neuron lesions affecting the
arm.
Brain.
1989;
112 (Pt 3)
749-763
- 33
Lang W, Zilch O, Koska C, Lindinger G, Deecke L.
Negative cortical DC shifts preceding and accompanying simple and complex sequential
movements.
Exp Brain Res.
1989;
74
99-104
- 34
Chen R, Cohen L G, Hallett M.
Role of the ipsilateral motor cortex in voluntary movement.
Can J Neurol Sci.
1997;
24
284-291
- 35
Kamp K W Van der, Rothwell J C, Thompson P D, Day B L, Marsden C D.
The movement-related cortical potential is abnormal in patients with idiopathic torsion
dystonia.
Mov Disord.
1995;
10
630-633
- 36
Yazawa S, Ikeda A, Kaji R. et al .
Abnormal cortical processing of voluntary muscle relaxation in patients with focal
hand dystonia studied by movement-related potentials.
Brain.
1999;
122 (Pt 7)
1357-1366
- 37
Pujol J, Roset-Llobet J, Rosines-Cubells D. et al .
Brain cortical activation during guitar-induced hand dystonia studied by functional
MRI.
Neuroimage.
2000;
12
257-267
Univ.-Prof. Dr. med. Eckart Altenmüller
Institut für Musikphysiologie und Musiker-Medizin · Hochschule für Musik und Theater
Hannover
Hohenzollernstraße 47
30161 Hannover
Email: altenmueller@hmt-hannover.de