References
<A NAME="RD11104ST-1A">1a</A>
Frackenpohl J.
Arvidsson PI.
Schreiber JV.
Seebach D.
ChemBioChem
2001,
2:
445
<A NAME="RD11104ST-1B">1b</A>
Cardillo G.
Tomasini C.
Chem. Soc. Rev.
1996,
25:
117
<A NAME="RD11104ST-1C">1c</A>
Nicolaou KC.
Dai V.-M.
Guy RK.
Angew. Chem., Int. Ed. Engl.
1994,
33:
15
<A NAME="RD11104ST-2">2</A>
Hayashi Y.
Katada J.
Harada T.
Tachiki A.
Ijima K.
Takiguchi Y.
Muramatsu M.
Miyazaki H.
Asari T.
Okazaki T.
Sato Y.
Yasuda E.
Yano M.
Uno I.
Ojima I.
J. Med. Chem.
1998,
41:
2345
<A NAME="RD11104ST-3A">3a</A>
Texier-Boullet F.
Latouche R.
Hamelin J.
Tetrahedron Lett.
1993,
34:
2123
<A NAME="RD11104ST-3B">3b</A>
Corey EJ.
Decicco CP.
Newbold RC.
Tetrahedron Lett.
1991,
32:
5287
<A NAME="RD11104ST-3C">3c</A>
Salzman TN.
Ratcliffe RW.
Christensen BG.
Boufford FA.
J. Am. Chem. Soc.
1980,
102:
6161
<A NAME="RD11104ST-4">4</A>
Seyden-Penne J.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
John Wiley and Sons;
New York:
1995.
<A NAME="RD11104ST-5A">5a</A>
Ben Ayed T.
Amiri H.
El Gaied MM.
Villieras J.
Tetrahedron
1995,
51:
9633
<A NAME="RD11104ST-5B">5b</A>
Perlmutter P.
Conjugate Addition Reactions in Organic Synthesis
Pergamon Press;
Oxford:
1992.
<A NAME="RD11104ST-5C">5c</A>
Bull SD.
Davies SG.
Delgado-Ballester S.
Fenton G.
Kelly PM.
Smith AD.
Synlett
2000,
1257
<A NAME="RD11104ST-5D">5d</A>
Davies SG.
McCarthy TD.
Synlett
1995,
700
<A NAME="RD11104ST-5E">5e</A>
Rosenthal D.
Braundrup G.
Davies KH.
Wall ME.
J. Org. Chem.
1965,
30:
3689
<A NAME="RD11104ST-6A">6a</A>
Jenner G.
Tetrahedron Lett.
1995,
36:
233
<A NAME="RD11104ST-6B">6b</A>
Matsubara S.
Yoshiyoka M.
Utimoto K.
Chem. Lett.
1994,
827
<A NAME="RD11104ST-7">7</A>
Varala R.
Alam MM.
Adapa SR.
Synlett
2003,
720 ; and references cited therein
<A NAME="RD11104ST-8">8</A>
Srivastava N.
Banik BK.
J. Org. Chem.
2003,
68:
2109
<A NAME="RD11104ST-9">9</A>
Bartoli G.
Bosco M.
Marcantoni E.
Petrini M.
Sambri L.
Torregiani E.
J. Org. Chem.
2001,
66:
9052 ; and references cited therein
<A NAME="RD11104ST-10">10</A>
Shaikh NS.
Deshpande VH.
Bedekar AV.
Tetrahedron
2001,
57:
9045
<A NAME="RD11104ST-11A">11a</A>
Cave GWV.
Raston CL.
Scott JL.
Chem. Commun.
2001,
2159
<A NAME="RD11104ST-11B">11b</A>
Tanaka K.
Toda F.
Chem. Rev.
2000,
100:
1025
<A NAME="RD11104ST-11C">11c</A>
Metzger JO.
Angew. Chem. Int. Ed.
1998,
37:
2975
<A NAME="RD11104ST-12">12</A>
Ranu BC.
Dey SS.
Hajra A.
Arkivoc
2002,
7:
75
<A NAME="RD11104ST-13A">13a</A>
Basu B.
Jha S.
Mridha NK.
Bhuiyan MMH.
Tetrahedron Lett.
2002,
43:
7967
<A NAME="RD11104ST-13B">13b</A>
Basu B.
Das P.
Bhuiyan MMH.
Jha S.
Tetrahedron Lett.
2003,
44:
3817
<A NAME="RD11104ST-13C">13c</A>
Das P.
Basu B.
Synth. Commun.
2004,
34:
2184
<A NAME="RD11104ST-14">14</A>
General Procedure for the Aza-Michael Addition Reaction: A mixture of the amine (2 mmol) and alkene (5 mmol) was added to activated [by heating
silica gel (10 g) at 120-130 °C for 10 min under vacuum (0.5 mm Hg) and then cooled
under N2] silica (1 g; E. Merck; silica gel HF254 for TLC) and stirred at the appropriate temperature for several hours (see Table
[1]
). TLC monitoring showed in most cases that the reaction was complete. The solid surface
was then taken in MeOH, filtered off and the filtrate was concentrated to afford the
crude products. Pure products were isolated by chromatography on a silica gel column
eluting with various ratios of EtOAc to light petroleum. They were identified by IR,
1H NMR and 13C NMR spectral data.
<A NAME="RD11104ST-15">15</A>
Selected NMR (300 MHz, CDCl
3
) Spectral Data for the Adducts:Entry 6: 1H NMR: δ = 0.98 (d, 12 H, J = 6.6 Hz), 1.24 (t, 3 H, J = 7.1 Hz), 2.38 (t, 2 H, J = 7.1 Hz), 2.75 (t, 2 H, J = 7.1 Hz), 2.99 (sep, 2 H, J = 6.6 Hz), 4.10 (q, 2 H, J = 7.1 Hz). 13C NMR: δ = 14.2, 20.6, 36.6, 41.1, 48.3, 60.0, 172.9.
Entry 9: 1H NMR: δ = 1.02-1.31 (m, 10 H), 1.60-1.77 (m, 10 H), 2.34 (t, 2 H, J = 7.1 Hz), 2.47-2.55 (m, 2 H), 2.87 (t, 2 H, J = 7.1 Hz). 13C NMR: δ = 20.6, 26.0, 32.1, 42.6, 58.3, 119.3.
Entry 10: 1H NMR: δ = 1.06-1.28 (m, 6 H), 1.26 (t, 6 H, J = 7.1 Hz), 1.59-1.78 (m, 4 H), 2.37-2.43 (m, 1 H), 2.41 (t, 4 H, J = 7.1 Hz), 2.79 (t, 4 H, J = 7.1 Hz), 4.11 (q, 4 H, J = 7.1 Hz). 13C NMR: δ = 14.2, 26.1, 26.2, 29.1, 34.8, 46.2, 60.2, 172.7.
Entry 13: 1H NMR: δ = 2.60 (t, 2 H, J = 6.5 Hz), 3.46 (t, 2 H, J = 6.5 Hz), 3.75 (s, 3 H), 6.60 (d, 2 H, J = 8.9 Hz), 6.80 (d, 2 H, J = 8.9 Hz). 13C NMR: δ = 18.1, 40.8, 55.7, 114.8, 115.0, 118.2, 140.0, 153.9.
Entry 18: 1H NMR: δ = 1.25 (t, 3 H, J = 7.1 Hz), 1.73 (t, 4 H, J = 5.8 Hz), 2.49 (t, 2 H J = 6.9 Hz), 2.55 (t, 4 H, J = 5.8 Hz), 2.72 (t, 2 H, J = 6.9 Hz), 3.94 (s, 4 H), 4.13 (q, 2 H, J = 7.1 Hz). 13C NMR: δ = 14.1, 32.5, 34.7, 50.9, 53.1, 60.3, 64.1, 106.9, 172.5.