References
<A NAME="RG36004ST-1">1</A>
Nicolaou KC.
Dai W.-M.
Guy RK.
Angew. Chem., Int. Ed. Engl.
1994,
33:
15 ; Angew. Chem. 1994, 106, 38
<A NAME="RG36004ST-2">2</A>
Nicolaou KC.
Pfefferkorn J.
Xu J.
Winssinger N.
Ohshima T.
Kim S.
Hosokawa S.
Vourloumis D.
van Delft F.
Li T.
Chem. Pharm. Bull.
1999,
47:
1199
Selected examples:
<A NAME="RG36004ST-3A">3a</A>
Trost BM.
Ameriks MK.
Org. Lett.
2004,
6:
1745
<A NAME="RG36004ST-3B">3b</A>
Papaioannou N.
Blank JT.
Miller SJ.
J. Org. Chem.
2003,
68:
2728
<A NAME="RG36004ST-3C">3c</A>
Fellows IM.
Kaelin DE.
Martin SF.
J. Am. Chem. Soc.
2000,
122:
10781
<A NAME="RG36004ST-3D">3d</A>
Ducray R.
Ciufolini MA.
Angew. Chem. Int. Ed.
2002,
41:
4688 ; Angew. Chem. 2002, 114, 4882
Selected reviews on syntheses of medium-sized rings:
<A NAME="RG36004ST-4A">4a</A>
Yet L.
Chem. Rev.
2000,
100:
2963
<A NAME="RG36004ST-4B">4b</A>
Mehta G.
Singh V.
Chem. Rev.
1999,
99:
881
<A NAME="RG36004ST-4C">4c</A>
Yet L.
Tetrahedron
1999,
55:
9349
<A NAME="RG36004ST-4D">4d</A>
Hoberg JO.
Tetrahedron
1998,
54:
12631
<A NAME="RG36004ST-4E">4e</A>
Rousseau G.
Tetrahedron
1995,
51:
2777
<A NAME="RG36004ST-4F">4f</A>
Roxburgh CJ.
Tetrahedron
1993,
49:
10749
<A NAME="RG36004ST-4G">4g</A>
Petasis NA.
Patane MA.
Tetrahedron
1992,
48:
5757
<A NAME="RG36004ST-4H">4h</A>
Evans PA.
Holmes AB.
Tetrahedron
1991,
47:
9131
First applications of this powerful one-electron transfer reagent to organic synthesis:
<A NAME="RG36004ST-5A">5a</A>
Namy J.-L.
Girard P.
Kagan HB.
Nouv. J. Chim.
1977,
1:
5
<A NAME="RG36004ST-5B">5b</A>
Girard P.
Namy JL.
Kagan HB.
J. Am. Chem. Soc.
1980,
102:
2693
Selected reviews on samarium diiodide-mediated reactions:
<A NAME="RG36004ST-6A">6a</A>
Edmonds DJ.
Johnston D.
Procter DJ.
Chem. Rev.
2004,
104:
3371
<A NAME="RG36004ST-6B">6b</A>
Kagan HB.
Tetrahedron
2003,
59:
10351
<A NAME="RG36004ST-6C">6c</A>
Banik BK.
Eur. J. Org. Chem.
2002,
2431
<A NAME="RG36004ST-6D">6d</A>
Steel PG.
J. Chem. Soc., Perkin Trans. 1
2001,
2727
<A NAME="RG36004ST-6E">6e</A>
Hölemann A.
Synlett
2002,
1497
<A NAME="RG36004ST-6F">6f</A>
Krief A.
Laval A.-M.
Chem. Rev.
1999,
99:
745
<A NAME="RG36004ST-6G">6g</A>
Molander GA.
Harris CR.
Tetrahedron
1998,
54:
3321
<A NAME="RG36004ST-6H">6h</A>
Khan FA.
Zimmer R.
J. Prakt. Chem.
1997,
339:
101
<A NAME="RG36004ST-6I">6i</A>
Molander GA.
Harris CR.
Chem. Rev.
1996,
96:
307
<A NAME="RG36004ST-6J">6j</A>
Kagan HB.
New J. Chem.
1990,
14:
453
<A NAME="RG36004ST-6K">6k</A>
Kagan HB.
Namy JL.
Tetrahedron
1986,
42:
6573
<A NAME="RG36004ST-6L">6l</A> Also see ref. 16
Selected references:
<A NAME="RG36004ST-7A">7a</A>
Sono M.
Nakashiba Y.
Nakashima K.
Tori M.
J. Org. Chem.
2000,
65:
3099
<A NAME="RG36004ST-7B">7b</A>
Molander GA.
McKie JA.
J. Org. Chem.
1995,
60:
872
<A NAME="RG36004ST-7C">7c</A>
Molander GA.
McKie JA.
J. Org. Chem.
1994,
59:
3186
<A NAME="RG36004ST-7D">7d</A>
Molander GA.
Kenny C.
J. Am. Chem. Soc.
1989,
111:
8236
<A NAME="RG36004ST-7E">7e</A>
Enholm EJ.
Trivellas A.
Tetrahedron Lett.
1989,
30:
1063
<A NAME="RG36004ST-7F">7f</A> Formation of 8-membered O-heterocycles has recently been reported during a study
of SmI2-induced cyclizations of methylenecyclo-propyl ketones:
Underwood JJ.
Hollingworth GJ.
Horton PN.
Hursthouse MB.
Kilburn JD.
Tetrahedron Lett.
2004,
45:
2223
<A NAME="RG36004ST-8A">8a</A>
Molander GA.
McKie JA.
J. Org. Chem.
1992,
57:
3132
<A NAME="RG36004ST-8B">8b</A>
Molander GA.
Acc. Chem. Res.
1998,
31:
603
<A NAME="RG36004ST-8C">8c</A>
Monovich LG.
Le Huérou Y.
Rönn M.
Molander GA.
J. Am. Chem. Soc.
2000,
122:
52
<A NAME="RG36004ST-8D">8d</A>
Molander GA.
George KM.
Monovich LG.
J. Org. Chem.
2003,
68:
9533
<A NAME="RG36004ST-9">9</A>
Khan FA.
Czerwonka R.
Zimmer R.
Reissig H.-U.
Synlett
1997,
995
<A NAME="RG36004ST-10A">10a</A>
Shim SC.
Hwang J.-T.
Kang H.-Y.
Chang MH.
Tetrahedron Lett.
1990,
31:
4765
<A NAME="RG36004ST-10B">10b</A>
Anies C.
Lallemand J.-Y.
Pancrazi A.
Tetrahedron Lett.
1996,
37:
5523
<A NAME="RG36004ST-10C">10c</A>
Baldwin JE.
MacKenzie Turner SC.
Moloney MG.
Tetrahedron
1994,
50:
9425
<A NAME="RG36004ST-11A">11a</A>
Dinesh CU.
Reissig H.-U.
Angew. Chem. Int. Ed.
1999,
38:
789 ; Angew. Chem. 1999, 111, 874
<A NAME="RG36004ST-11B">11b</A>
Nandanan E.
Dinesh CU.
Reissig H.-U.
Tetrahedron
2000,
56:
4267
<A NAME="RG36004ST-12">12</A>
Hölemann A.
Dissertation
Freie Universität Berlin;
Germany:
2004.
<A NAME="RG36004ST-13">13</A>
Typical Procedure: Cyclization of 5 to 6. Samarium powder (0.361 g, 2.40 mmol) and 1,2-diiodoethane (0.620 g, 2.20 mmol) were
suspended in freshly distilled anhyd THF (25 mL) under an argon atmosphere and stirred
for 2 h at r.t. To the resulting dark blue solution HMPA (3.3 g, 18 mmol) was added.
Alkynyl ketone 5 (0.230 g, 0.80 mmol) and
t-BuOH (0.150 g, 2.00 mmol) were dissolved in anhyd THF (15 mL) and then added to the
deep violet solution. After 16 h at r.t., the mixture was quenched with sat. aq solution
of NaHCO3 (15 mL) and H2O (10 mL), the organic layer was separated and the aqueous layer was extracted with
Et2O (3 × 15 mL). The combined organic extracts were washed with H2O (15 mL) and brine (2 × 20 mL), dried with anhyd MgSO4, filtered and evaporated. The resulting crude oil was purified by column chromatography
on silica gel using
n-hexane-EtOAc (5:1) as eluent. Compound 6 (0.181 g, 78%) was obtained as a colorless oil. Data for tert-butyl 5-hydroxy-5-methyl-5,6-dihydro-1-benzazocin-1(2H)-carboxylate (6): 1H NMR (500 MHz, CDCl3, 334 K): δ = 7.22-7.12 (m, 4 H, Ar), 5.49 (dd, J = 1.0, 12.4 Hz, 1 H, 4-H), 5.27 (td, J = 6.9, 12.4 Hz, 1 H, 3-H), AB part of the ABX system (δA = 4.31, δB = 4.22, J
AB = 15.3 Hz, J
AX = J
BX = 6.9 Hz, each 1 H, 2-H), 3.17 (d, J = 13.8 Hz, 1 H, 6-H), 2.84 (d, J = 13.8 Hz, 1 H, 6-H), 1.94 (br s, 1 H, OH), 1.44 (s, 3 H, 5-CH3), 1.39 [s, 9 H, C(CH3)3]. 13C NMR (126 MHz, CDCl3, 334 K): δ = 154.6 (s, CO), 141.8 (d, C-4), 140.3, 135.9 (2 s, Ar), 130.1, 129.0,
127.2, 126.8 (4 d, Ar), 121.4 (d, C-3), 80.3, 28.3 [s, q, C(CH3)3], 74.5 (s, C-5), 47.4 (t, C-2), 45.4 (t, C-6), 29.5 (q, 5-CH3). IR (film): ν = 3450 (O-H), 3065-2930 (=C-H, C-H), 1695 (C=O), 1605-1495 (C=C) cm-1. Anal. Calcd for C17H23NO3 (289.4): C, 70.56; H, 8.01; N, 4.84. Found: C, 70.32; H, 8.04; N, 4.39.
<A NAME="RG36004ST-14A">14a</A>
Inanaga I.
Ishikawa M.
Yamaguchi M.
Chem. Lett.
1987,
1485
<A NAME="RG36004ST-14B">14b</A>
Shabangi M.
Flowers RA.
Tetrahedron Lett.
1997,
38:
1137
<A NAME="RG36004ST-14C">14c</A>
Prasad E.
Flowers RA.
J. Am. Chem. Soc.
2002,
124:
6895 , and references cited therein
<A NAME="RG36004ST-15">15</A>
Attempts to replace HMPA by less toxic co-solvents have so far not been successful
in general. In individual examples, related additives (e.g. N-methylpyrrolidinone or other phosphoramide derivatives) were efficient but unfortunately,
no rule has yet been recognized in which cases these additives are applicable. Berndt,
M.; Gross, S.; Hölemann, A.; Reissig, H.-U. unpublished results.
<A NAME="RG36004ST-16">16</A>
Berndt M.
Gross S.
Hölemann A.
Reissig H.-U.
Synlett
2004,
422
<A NAME="RG36004ST-17A">17a</A> The relative configuration of the hydroxyl group and alkyl chain was determined
by regarding the chemical shift of the proton at C-1. See:
Kobayashi Y.
Takahisa E.
Nakano M.
Watatani K.
Tetrahedron
1997,
53:
1627
<A NAME="RG36004ST-17B">17b</A>
The diastereoselectivity in favor of the trans-isomer may be explained by assuming that the sterically demanding samarium-alkoxy
group and the alkyl group are in equatorial positions in the transition state of cyclization.
<A NAME="RG36004ST-18">18</A>
The formation of allene 14 could not be mechanistically elucidated so far, but it can probably be explained
by assuming a samarium(II) or samarium(III)-induced isomerization of the alkyne to
an allene moiety.
<A NAME="RG36004ST-19">19</A>
The configuration of the double bond was unambiguously determined by NOESY spectroscopy.
<A NAME="RG36004ST-20">20</A>
Hölemann A.
Brüdgam I.
Hartl H.
Reissig H.-U.
Z. Kristallogr. NCS
2004,
219:
59
<A NAME="RG36004ST-21A">21a</A>
Dudley GB.
Danishefsky SJ.
Org. Lett.
2001,
3:
2399
<A NAME="RG36004ST-21B">21b</A>
Büchi G.
Egger B.
J. Org. Chem.
1971,
36:
2021