Neuropediatrics 2005; 36(2): 78-89
DOI: 10.1055/s-2005-837574
Original Article

Georg Thieme Verlag KG Stuttgart · New York

Predictive Value of Neonatal MRI with Respect to Late MRI Findings and Clinical Outcome. A Study in Infants with Periventricular Densities on Neonatal Ultrasound

L. T. L. Sie1 , 6 , A. A. M. Hart5 , J. van Hof4 , L. de Groot4 , W. Lems4 , H. N. Lafeber2 , J. Valk3 , M. S. van der Knaap1
  • 1Department of Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
  • 2Department of Neonatology, VU University Medical Center, Amsterdam, The Netherlands
  • 3Department of Radiology, VU University Medical Center, Amsterdam, The Netherlands
  • 4Department of Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
  • 5Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
  • 6Present address: Department of Child Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
Further Information

Publication History

Received: April 16, 2003

Accepted after Revision: January 29, 2005

Publication Date:
18 March 2005 (online)

Abstract

Purpose: The aim of this study was to correlate hypoxic-ischemic white matter damage on neonatal MRI with MRI appearance and neurological outcome at the age of 1œ years. Patients and Methods: A sequential cohort of infants with periventricular densities on neonatal ultrasound was studied with neonatal MRI. Images of 46 infants with a mean gestational age of 31 weeks were obtained at a mean age of 20 days after birth and at 1œ years. To establish agreement between the neonatal and follow-up MRI (general, motor, and visual scores), the weighted Cohen's kappa test was used. To establish the predictive power of neonatal MRI with respect to the neurologic indices at the age of 1œ years, the sensitivity, specificity, and positive and negative predictive values were calculated. Results: There was a moderately good to good agreement between the general, motor, and visual neonatal and follow-up MRI scores: weighted kappa = 0.59 (95 % CI: 0.44 - 0.74), 0.82 (95 % CI: 0.72 - 0.93), and 0.70 (95 % CI: 0.56 - 0.84), respectively. Neonatal MRI scores provided a good prediction of the three neurological outcome measures (developmental delay, cerebral palsy, and cerebral visual impairment): sensitivity, specificity, and predictive values were high, with little difference between the three MRI scores. The 32 patients with (nearly) normal neonatal MRI scores were neurologically (nearly) normal at 1œ years on all three outcome measures, whereas 8 patients with seriously abnormal neonatal MRI scores were neurologically abnormal at 1œ years on all three outcome measures. Conclusion: Neonatal MRI is able to predict the precise localization and size of perinatal leukomalacia on follow-up MRI and provides a good prediction of neurological outcome at 1œ years.

References

  • 1 Aida N, Nishimura G, Hachiya Y, Matsui K, Takeuchi M, Itani Y. MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings.  AJNR. 1998;  19 1909-1921
  • 2 Amiel-Tison C, Ellison P. Birth asphyxia in the fullterm newborn: early assessment and outcome.  Dev Med Child Neurol. 1986;  28 671-682
  • 3 Anonymous. An international classification of retinopathy of prematurity. Prepared by an international committee.  Brit J Ophthalmol. 1984;  68 690-697
  • 4 Armstrong D, Norman M G. Periventricular leucomalacia in neonates. Complications and sequelae.  Arch Dis Child. 1974;  49 367-375
  • 5 Baenziger O, Martin E, Steinlin M, Good M, Largo R, Burger R. et al . Early pattern recognition in severe perinatal asphyxia: a prospective MRI study.  Neuroradiology. 1993;  35 437-442
  • 6 Barkovich A J. MR and CT evaluation of profound neonatal and infantile asphyxia.  AJNR. 1992;  13 959-972
  • 7 Barkovich A J. Normal development of the neonatal and infant brain, skull, and spine. Barkovich AJ Pediatric Neuroimaging. 3rd ed. Philadelphia; Lippincott, Williams & Wilkins 2000: 13-69
  • 8 Battin M R, Maalouf E F, Counsel S J, Herlihy A H, Rutherford M A, Azzopardi D. et al . Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding.  Pediatrics. 1998;  101 957-962
  • 9 Byrne P, Welch R, Johnson M A, Darrah J, Piper M. Serial magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy.  J Pediatr. 1990;  117 694-700
  • 10 Cioni G, Bartalena L, Biagioni E, Boldrini A, Canapicchi R. Neuroimaging and functional outcome of neonatal leukomalacia.  Behav Brain Res. 1992;  49 7-19
  • 11 Cioni G, Bertuccelli B, Boldrini A. et al . Correlation between visual function, neurodevelopmental outcome, and magnetic resonance imaging findings in infants with periventricular leukomalacia.  Arch Dis Child Fetal Neonatal Ed. 2000;  82 F134-F140
  • 12 Cornette L G, Tanner S F, Ramenghi L A, Miall L S, Childs A M, Arthur R J. et al . Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of puntate lesions.  Arch Dis Child Fetal Neonatal Ed. 2002;  86 F171-F177
  • 13 De Groot L, Hopkins B, Touwen B CL. A method to assess the development of muscle power in preterms after term age.  Neuropediatrics. 1992;  23 172-179
  • 14 De Vries L S, Eken P, Dubowitz L MS. The spectrum of leukomalacia using cranial ultrasound.  Behav Brain Res. 1992;  49 1-6
  • 15 Eken P, De Vries L S, Van der Graaf Y, Meiners L C, Van Nieuwenhuizen O. Haemorrhagic-ischaemic lesions of the neonatal brain: correlation between cerebral visual impairment, neurodevelopmental outcome and MRI in infancy.  Dev Med Child Neurol. 1995;  37 41-55
  • 16 Fawer C L, Calame A, Perentes E, Anderegg A. Periventricular leucomalacia: A correlation study between real-time ultrasound and autopsy findings.  Neuroradiology. 1985;  27 292-300
  • 17 Felderhoff-Mueser U, Rutherford M A, Squier W V, Cox P, Maalouf E F, Counsell S J. et al . Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants.  AJNR. 1999;  20 1349-1357
  • 18 Flodmark O, Lupton B, Li D, Stimac G K, Roland E H, Hill A. et al . MR imaging of periventricular leukomalacia in childhood.  Am J Roentgenol. 1989;  152 583-590
  • 19 Gibson N A, Fielder A R, Trounce J Q, Levene M I. Ophthalmic findings in infants of very low birthweight.  Dev Med Child Neurol. 1990;  32 7-13
  • 20 Hagberg B, Hagberg G, Olow I. The changing panorama of cerebral palsy in Sweden. I. Analysis of general changes.  Acta Paediatr Scand. 1975;  64 187-192
  • 21 Ipata A E, Cioni G, Bottai P, Fazzi B, Canapicchi R, Van Hof-Van Duin J. Acuity card testing in children with cerebral palsy related to magnetic resonance images, mental levels and motor abilities.  Brain Dev. 1994;  16 195-203
  • 22 Keeney S E, Adcock E W, Mc Ardle C B. Prospective observations of 100 high-risk neonates by high-field (1.5 Tesla) magnetic resonance imaging of the central nervous system, I: intraventricular and extracerebral lesions.  Pediatrics. 1991;  87 421-430
  • 23 Koeda T, Takeshita K. Visuo-perceptual impairment and cerebral lesions in spastic diplegia with preterm birth.  Brain Dev. 1992;  14 239-244
  • 24 Krägeloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou H C. Brain lesions in preterms: origin, consequence and compensation.  Acta Paediatr. 1999;  88 897-908
  • 25 Lanzi G, Fazzi E, Uggetti C, Cavallini A, Danova S, Egitto M G. et al . Cerebral visual impairment in periventricular leukomalacia.  Neuropediatrics. 1998;  29 145-150
  • 26 Ment L R, Bada H S, Barnes P, Grant P E, Hirtz D, Papile L A. et al . Practice parameter: neuroimaging of the neonate. Report of the quality standards subcommittee of the American Academy of Neurology and the practice committee of the Child Neurology Society.  Neurology. 2002;  58 1726-1738
  • 27 Panneth N, Rudelli R, Monte W, Rodriguez E, Pinto J, Kairam R. et al . White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer.  J Pediatr. 1990;  116 975-984
  • 28 Pike M G, Holmstrom G, De Vries L S, Pennock J M, Drew K J, Sonksen P M. et al . Patterns of visual impairment associated with lesions of the preterm infant brain.  Dev Med Child Neurol. 1994;  36 849-862
  • 29 Roelants-Van Rijn A M, Groenendaal F, Beek F JA, Eken P, Van Haastert I C, De Vries L S. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome.  Neuropediatrics. 2001;  32 80-89
  • 30 Rutherford M A, Pennock J M, Dubowitz L MS. Cranial ultrasound and magnetic resonance imaging in hypoxic-ischemic encephalopathy: a comparison with outcome.  Dev Med Child Neurol. 1994;  36 813-825
  • 31 Rutherford M A, Pennock J, Schwieso J, Cowan F, Dubowitz L MS. Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome.  Arch Dis Child. 1996;  75 F145-F151
  • 32 Sie L TL, Van der Knaap M S, Van Wezel-Meijler G, Valk J. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants.  Neuropediatrics. 1997;  28 97-105
  • 33 Sie L TL, Van der Knaap M S, Van Wezel-Meijler G, Taets van Amerongen A HM, Lafeber H N, Valk J. Early MR features of hypoxic-ischemic brain injury in neonates with periventricular densities on sonograms.  AJNR. 2000;  21 852-861
  • 34 Sie L TL, Barkhof F, Lafeber H N, Valk J, Van der Knaap M S. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy.  Eur Radiol. 2000;  10 1594-1601
  • 35 Sobel D F, Gallen C C, Schwartz B J, Waltz T A, Copeland B, Yamada S. et al . Locating the central sulcus: comparison of MR, anatomic and magnetoencephalographic functional methods.  AJNR. 1993;  14 915-925
  • 36 Teller D Y, McDonald M A, Preston K, Sebris S L, Dobson V. Assessment of visual acuity in infants and children: the acuity card procedure.  Dev Med Child Neurol. 1986;  28 779-789
  • 37 Touwen B CL. Examination of the child with minor neurological dysfunction. Clinics in Developmental Medicine. No. 71. London; Heinemann 1979
  • 38 Uggetti C, Egitto M G, Fazzi E, Bianchi P E, Bergamaschi R, Zappoli F. et al . Cerebral visual impairment in periventricular leukomalacia: MR correlation.  AJNR. 1996;  17 979-985
  • 39 Van der Knaap M S, Valk J. MR imaging of various stages of normal myelination during the first year of life.  Neuroradiology. 1990;  31 459-470
  • 40 Van der Meulen B F, Smrkovsky M. B.O.S. 2 - 30. Bayley ontwikkelingsschalen. Handleiding. Lisse; Swets & Zeitlinger 1983
  • 41 Van Hof-van Duin J, Heersema D J, Groenendaal F, Baerts W, Fetter W P. Visual field and grating acuity development in low-risk preterm infants during the first 2œ years after term.  Behav Brain Res. 1992;  49 115-122
  • 42 Van Nieuwenhuizen O. Cerebral visual disturbance in infantile encephalopathy. Thesis. Dordrecht; Martinus Nijhof 1987
  • 43 Van Wezel-Meijler G, Van der Knaap M S, Sie L TL, Oosting J, van Amerongen A H, Cranendonk A. et al . Magnetic resonance imaging of the brain in premature infants during the neonatal period. Normal phenomena and reflection of mild ultrasound abnormalities.  Neuropediatrics. 1998;  29 89-96
  • 44 Volpe J J. Hypoxic-ischemic encephalopathy. Volpe JJ Neurology of the Newborn. 3rd ed. Philadelphia; Saunders 1995: 314-369
  • 45 Wood N S, Marlow N, Costeloe K, Gibson A T, Wilkinson A R. Neurologic and developmental disability after extremely preterm birth.  N Engl J Med. 2000;  343 378-384

Marjo S. van der Knaap

Department of Child Neurology
VU University Medical Center

De Boelelaan 1117

1081 HV Amsterdam

The Netherlands

Email: ms.vanderknaap@vumc.nl

    >