Subscribe to RSS
DOI: 10.1055/s-2005-858108
© Georg Thieme Verlag KG Stuttgart · New York
MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems
MR-Based Methods of the Functional Imaging of the CNSPublication History
Publication Date:
04 May 2005 (online)
Zusammenfassung
Im vorliegenden Artikel werden die gebräuchlichsten Methoden der funktionellen MR-Bildgebung dargestellt. Der Schwerpunkt liegt dabei auf der Abbildung funktioneller Prozesse und deren Pathologie im Zentralnervensystem. Es werden die physikalisch-physiologischen Grundlagen kontrastmittelverstärkter und kontrastmittelfreier Verfahren dargestellt und es wird ihr Potenzial bezüglich einer klinischen Anwendung anhand ausgewählter Fälle diskutiert. Im Bereich der kontrastmittelverstärkten MR-Techniken wird insbesondere auf die T1- und T2*-dynamische MRT eingegangen. Ausgehend von verschiedenen pharmakokinetischen Modellen der Kontrastmittelanreicherung werden diagnostische Ansätze für die Neurologie und Strahlentherapie diskutiert. Die kontrastmittelfreien Verfahren werden am Beispiel der Blood Oxygenation Level Dependent (BOLD)-fMRT und des Arterial Spin Labelings (ASL) dargestellt und ihre diagnostische Relevanz wird an verschiedenen klinischen Beispielen aus der Psychiatrie und Neurochirurgie erläutert. Abschließend wird ein vergleichender Ausblick bezüglich der zu erwartenden Entwicklungen auf dem Gebiet der funktionellen MRT gegeben.
Abstract
This review presents the basic principles of functional imaging of the central nervous system utilizing magnetic resonance imaging. The focus is set on visualization of different functional aspects of the brain and related pathologies. Additionally, clinical cases are presented to illustrate the applications of functional imaging techniques in the clinical setting. The relevant physics and physiology of contrast-enhanced and non-contrast-enhanced methods are discussed. The two main functional MR techniques requiring contrast-enhancement are dynamic T1- and T2*-MRI to image perfusion. Based on different pharmacokinetic models of contrast enhancement diagnostic applications for neurology and radio-oncology are discussed. The functional non-contrast enhanced imaging techniques are based on “blood oxygenation level dependent (BOLD)-fMRI and arterial spin labeling (ASL) technique. They have gained clinical impact particularly in the fields of psychiatry and neurosurgery.
Key words
Functional MRI - dynamic contrast enhanced-MRI - dynamic susceptibility contrast-MRI - BOLD-fMRI - ASL
Literatur
- 1 Degani H, Gusis V, Weinstein D. et al . Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nature Medicine. 1997; 3 780-782
- 2 Brix G, Semmler W, Port R. et al . Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr. 1991; 15 621-628
- 3 Frouge C, Guinebretiere J M, Contesso G. et al . Correlation between contrast enhancement in dynamic magnetic resonance imaging of the breast and tumor angiogenesis. Invest Radiol. 2004; 29 1043-1049
- 4 Knopp M V, von Tengg-Kobligk H, Floemer F. et al . Contrast agents for MRA: future directions. J Magn Reson Imag. 1994; 10 314-316
- 5 Tofts P S, Brix G, Buckley D L. et al . Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imag. 1999; 10 223-232
- 6 Harrer J U, Parker G J, Heeger D J. et al . Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging. 2004; 20 748-757
- 7 Scholdei R, Wenz F, Essig M. et al . Simultane Bestimmung der arteriellen Inputfunktion für die dynamische susceptibilitätsgewichtete Magnetresonanz-tomographie aus der A. carotis interna und der A. cerebri media. Fortschr Röntgenstr. 1999; 171 38-43
- 8 Cha S, Knopp E A. Dynamic contrast-enhanced T2*-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. Am J Neuroradiol. 2000; 21 881-890
- 9 Rempp K A, Brix G, Wenz F. et al . Quantification of Regional Cerebral Blood Flow and Volume with Dynamic Susceptibility Contrast-enhanced MR Imaging. Radiology. 1994; 193 637-641
- 10 Sugahara T, Korogi Y, Tomiguchi S. et al . Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol. 2000; 21 901-909
- 11 Benner T, Heiland S, Erb G. et al . Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Mag Reson Imag. 1997; 15 307-317
- 12 Rosen B R, Belliveau J W, Vevea J M. et al . Perfusion Imaging with NMR Contrast Agnets. Mag Reson Med. 1990; 14 249-265
- 13 Calamante F, Gadian D G, Connelly A. Delay and Dispersion Effects in Dynamic Susceptibility Contrast MRI: Simulations Using Singular Value Decomposition. Mag Reson Med. 2000; 44 466-473
- 14 Casey S O, Sampaio R C, Michel E. et al . Posterior reversible encephalopathy syndrome: utility of fluid-attenuated inversion recovery MR imaging in the detection of cortical and subcortical lesions. Am J Neuroradiol. 2000; 21 1199-1206
- 15 Østergaard L, Weisskoff R M, Chesler D A. et al . High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Mag Reson Med. 1996; 36 715-725
- 16 Finocchi V, Bozzao A, Bonamini M. et al . Magnetic resonance imaging in Posterior Reversible Encephalopathy Syndrome: report of three cases and review of literature. Arch Gynecol Obstet. 2005; 271 79-85
- 17 Trommer B L, Homer D, Mikhael M A. Cerebral vasospasm and eclampsia. Stroke. 1988; 19 326-329
- 18 Petrella J R, Provenzale J M. MR-Perfusion Imaging of the Brain: Techniques and Applications. Am J Radiol. 2000; 175 207-219
- 19 Meier P, Zierler K L. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954; 6 731-744
- 20 Schaefer P W, Buonanno F S, Gonzalez R G. et al . Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke. 1997; 28 1082-1085
- 21 Barbier E L, den B oer JA, Peters A R. et al . A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images. Mag Reson Imag. 1999; 10 242-253
- 22 Hacklander T, Reichenbach J R, Modder U. Comparison of cerebral blood volume measurements using the T1 and T2* methods in normal human brains and brain tumors. J Comput Assist Tomogr. 2004; 21 857-866
- 23 Sugahara T, Korogi Y, Kochi M. et al . Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol. 1998; 171 1479-1486
- 24 Ogawa S, Lee T M, Kay A R. et al . Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS. 1990; 87 9868-9872
- 25 Buxton R B. The elusive initial dip. NeuroImage. 2001; 13 953-958
- 26 Hoge R D, Atkinson J, Gill B. et al . Investigation of BOLD Signal Dependence on Cerebral Blood Flow and Oxygen Consumption: The Deoxyhemoglobin Dilution Model. Mag Reson Med. 1999; 42 849-863
- 27 Buxton R B, Wong E C, Frank L R. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Mag Reson Med. 1998; 39 855-864
- 28 Howseman A M, Bowtell R W. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos Trans R Soc Lond B Biol Sci. 1999; 354 1179-1194
- 29 Krings T, Reinges M H, Willmes K. et al . Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2002; 70 749-760
- 30 Logothetis N K, Pauls J, Augath M. et al . Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001; 412 150-157
- 31 Cohen M S. Parametric Analysis of fMRI Data Using Linear Systems Methods. NeuroImage. 1997; 6 93-103
- 32 Friston K J, Frith C D, Turner R. et al . Characterizing Evoked Hemodynamics with fMRI. NeuroImage. 1995; 2 157-165
- 33 Friston K J, Mechelli A, Turner R. et al . Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics. NeuroImage. 2000; 12 466-477
- 34 Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc. Brain Metab Rev. 1995; 7 240-276
- 35 Cohen E R, Rostrup E, Sidaros K. et al . Hypercapnic Normalization of BOLD fMRI Data: Comparision Across Field Strengths and Pulse Sequences. Proceedings of the International Society of Mag Reson Med. 2003; 11 1767
- 36 Schad L R, Wenz F, Baudendistel K. et al . Functional 2D and 3D magnetic resonance imaging of motor cortex stimulation at high spatial resolution using standard 1.5 T imager. Magn Reson Imag. 1994; 12 9-15
- 37 Constable R T, Kennan R P, Puce A. et al . Functional NMR imaging using fast spin echo at 1.5 T. Magn Reson Med. 1994; 31 686-690
- 38 Küger G, Kastrup A, Glover G H. Neuroimaging at 1.5 and at 3.0 Tesla: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging. Mag Reson Med. 2001; 45 595-604
- 39 Wustenberg T, Giesel F L, Strasburger H. Methodological principles for optimising functional MRI experiments. Radiologe. 2005; 45 99-112
- 40 Wustenberg T, Jordan K, Giesel F L. et al . Physiological and technical limitations of functional magnetic resonance imaging (fMRI) - consequences for clinical use. Radiologe. 2003; 43 552-557
- 41 Nielson K A, Langenbecker S A, Ross T J. et al . Comparatibility of functional MRI response in young and old during inhibition. NeuroReport. 2004; 15 129-133
- 42 Riecker A, Grodd W, Klose U. et al . Relation Betwenn Regional Functional MRI Activation and Vascular Reactivity to Carbon Dioxide During Normal Aging. J Cereb Blood Metab. 2003; 23 565-573
- 43 Rother J, Knab R, Hamzei F. et al . Negative dip in BOLD fMRI is caused by blood flow - oxygen consumption uncoupling in humans. NeuroImage. 2002; 15 98-102
- 44 Fernández G, de Greiff A, von Oertzen J. et al . Language Mapping in Less Than 15 Minutes: Real-Time Functional MRI during Routine Clinical Investigation. NeuroImage. 2001; 14 585-594
- 45 Giesel F L, Hohmann N, Seidl U. et al . Working memory in volunteers and schizophrenics using BOLD fMRI. Radiologe. 2005 (in Druck);
- 46 Detre J A, Leigh J S, Williams D S. et al . Perfusion imaging. Mag Reson Med. 1992; 23 37-45
- 47 Williams D S, Detre J A, Leigh J S. et al . Magnetic resonance imaging of perfusion using spin inversion of arterial water. PNAS. 1992; 89 212-216
- 48 Zhang W, Williams D S, Detre J A. et al . Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Mag Reson Med. 1992; 25 362-371
- 49 Alsop D C, Detre J A. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology. 1998; 208 410-416
- 50 Talangala S L. Multi-Slice perfusion MRI using continuous arterial water labelling controlling for MT effects with simultaneous proximal and distal RF irradiation. Proc of the 6th annual meeting of the ISMRM. 1998; 6 381
- 51 Silva A C, Zhang W, Williams D S. et al . Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Mag Reson Med. 1995; 33 209-214
- 52 Zhang W, Silva A C, Williams D S. et al . NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Mag Reson Med. 1995; 33 370-376
- 53 Zaharchuk G, Ledden P J, Kwong K K. et al . Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Mag Reson Med. 1999; 41 1093-1098
- 54 Edelman R R, Siewert B, Darby D G. et al . Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology. 1994; 192 513-520
- 55 Chen Q, Siewert B, Bly B M. et al . STAR-HASTE: perfusion imaging without magnetic susceptibility artifact. Mag Reson Med. 1997; 338 404-408
- 56 Wong E C, Buxton R B, Frank L R. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR in Biomed. 1997; 10 237-249
- 57 Kim S G, Tsekos N V. Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Mag Reson Med. 1997; 37 425-435
- 58 Kim S G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Mag Reson Med. 2004; 34 293-301
- 59 Helpern J A, Branch C A, Yongbi M N. et al . Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR). Mag Reson Med. 2004; 15 135-139
- 60 Zhou J, Mori S, van Zijl P C. FAIR excluding radiation damping (FAIRER). Mag Reson Med. 1998; 40 712-719
- 61 Wong E C, Buxton R B, Frank L R. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Mag Reson Med. 1998; 39 702-708
- 62 Wong E C, Buxton R B, Frank L R. Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am. 1999; 9 333-342
- 63 Luh W M, Wong E C, Bandettini P A. et al . QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Mag Reson Med. 1999; 41 1246-1254
- 64 Gunther M, Bock M, Schad L R. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Mag Reson Med. 2001; 46 974-984
- 65 Barbier E L, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J Magn Reson Imag. 2001; 13 496-520
- 66 Forman S D, Silva A C, Dedousis N. et al . Simultaneous glutamate and perfusion fMRI responses to regional brain stimulation. J Cereb Blood Metab. 1998; 18 1064-1070
- 67 Hendrich K S, Kochanek P M, Melik J A. Assesment of cerebral blood flow during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats. Proc of the 8th annual meeting of the ISMRM. 2000; 8 1277
- 68 Weber M A, Gunther M, Lichy M P. et al . Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol. 2003; 38 712-718
- 69 Weber M A, Thilmann C, Lichy M P. et al . Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol. 2004; 39 277-287
Dr. med. Frederik Lars Giesel
Radiologie, Deutsches Krebsforschungszentrum (DKFZ)
INF 280
69120 Heidelberg
Phone: ++ 49/62 21/42-24 92
Fax: ++ 49/62 21/42-24 62
Email: f.giesel@dkfz.de