Zusammenfassung
Ziel: Ziel war die Differenzierung von orthotop implantiertem Prostatakarzinom und normalem
Drüsengewebe der Prostata nativ und mittels Gd-DTPA-BMA-unterstützter dynamischer
MRT am Rattenmodell. Material und Methoden: Bei 15 Ratten wurden Dunning-Tumorzellen der Sublinie G orthotop in die Prostata
implantiert. Die MRT-Untersuchungen erfolgten 56 bis 60 Tage nach Tumorzellimplantation
mittels T1 w SE-, T2 w TSE-Sequenzen und einer 2D-FLASH-Sequenz für die kontrastmittelbasierten
dynamischen Untersuchungen. Das interstitielle Leckvolumen, die normalisierte Permeabilität
und das Permeabilitätsoberflächenprodukt von Tumor und gesundem Prostatagewebe wurden
mittels pharmakokinetischer Modellierung quantitativ bestimmt. Die Ergebnisse wurden
durch histologische Untersuchungen bestätigt. Ergebnisse: Axiale T2 w TSE-Bilder stellten hypointense tumorverdächtige Areale in allen 15 Tieren
dar. Das Tumorvolumen betrug im Durchschnitt 46,5 mm3 . In der dynamischen Sequenz konnte bei allen Tieren in den tumorsuspekten Arealen
ein beschleunigter sowie ein erhöhter Anstieg der Signalintensität im Vergleich zum
umgebenden Prostatagewebe festgestellt werden. Das interstitielle Volumen und das
Permeabilitätsoberflächenprodukt im Tumor zeigten einen signifikanten Anstieg von
420 % (p < 0,001) und 424 % (p < 0,001) gegenüber normalem Prostatagewebe, während
bei der normalisierten Permeabilität allein kein signifikanter Unterschied festgestellt
werden konnte. Schlussfolgerung: Die Ergebnisse der vorliegenden Studie zeigen, dass sich mit quantitativer Analyse
von kontrastmittelunterstützten dynamischen MRT-Daten ein kleines langsam gewachsenes
orthotopes Prostatakarzinom von normalem Prostatagewebe im Rattenmodell differenzieren
lässt.
Abstract
Purpose: To differentiate orthotopically implanted prostate cancer from normal prostate tissue
using magnetic resonance imaging (MRI) and Gd-DTPA-BMA-enhanced dynamic MRI in the
rat model. Material and Methods: Tumors were induced in 15 rats by orthotopic implantation of G subline Dunning rat
prostatic tumor cells. MRI was performed 56 to 60 days after tumor cell implantation
using T1-weighted spin-echo, T2-weighted turbo SE sequences, and a 2D FLASH sequence
for the contrast medium based dynamic study. The interstitial leakage volume, normalized
permeability and the permeability surface area product of tumor and healthy prostate
were determined quantitatively using a pharmacokinetic model. The results were confirmed
by histologic examination. Results: Axial T2-weighted TSE images depicted low-intensity areas suspicious for tumor in
all 15 animals. The mean tumor volume was 46.5 mm3. In the dynamic study, the suspicious
areas in all animals displayed faster and more pronounced signal enhancement than
surrounding prostate tissue. The interstitial volume and the permeability surface
area product of the tumors increased significantly by 420 % (p < 0.001) and 424 %
(p < 0.001), respectively, compared to normal prostate tissue, while no significant
difference was seen for normalized permeability alone. Conclusion: The results of the present study demonstrate that quantitative analysis of contrast-enhanced
dynamic MRI data enables differentiation of small, slowly growing orthotopic prostate
cancer from normal prostate tissue in the rat model.
Key words
Rat model - tumor cell implantation - orthotopic prostate cancer - magnetic resonance
imaging (MRI) - Gd-DTPA-BMA
References
1
Barentsz J O, Engelbrecht M, Jager G J. et al .
Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer.
J Magn Reson Imaging.
1999;
10
295-304
2
Engelbrecht M R, Huisman H J, Laheij R J. et al .
Discrimination of prostate cancer from normal peripheral zone and central gland tissue
by using dynamic contrast-enhanced MR imaging.
Radiology.
2003;
229
248-254
3
Gossmann A, Okuhata Y, Shames D M. et al .
Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging
in the rat: comparison of macromolecular and small-molecular contrast media - preliminary
experience.
Radiology.
1999;
213
265-272
4
Kiessling F, Huber P E, Grobholz R. et al .
Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of
prostate cancers in rats treated by radiotherapy.
Invest Radiol.
2004;
39
34-44
5
Lein M, Jung K, Le D K. et al .
Synthetic inhibitor of matrix metalloproteinases (batimastat) reduces prostate cancer
growth in an orthotopic rat model.
Prostate.
2000;
43
77-82
6
Isaacs J T, Isaacs W B, Feitz W F. et al .
Establishment and characterization of seven Dunning rat prostatic cancer cell lines
and their use in developing methods for predicting metastatic abilities of prostatic
cancers.
Prostate.
1986;
9
261-281
7
Dethlefsen L A, Prewitt J M, Mendelsohn M L.
Analysis of tumor growth curves.
J Natl Cancer Inst.
1968;
40
389-405
8
Tofts P S, Brix G, Buckley D L. et al .
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of
a diffusable tracer: standardized quantities and symbols.
J Magn Reson Imaging.
1999;
10
223-232
9
Folkman J, Watson K, Ingber D. et al .
Induction of angiogenesis during the transition from hyperplasia to neoplasia.
Nature.
1989;
339
58-61
10
Schlemmer H P, Merkle J, Grobholz R. et al .
Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict
microvessel density in prostatectomy specimens?.
Eur Radiol.
2004;
14
309-317
11
Siegal J A, Yu E, Brawer M K.
Topography of neovascularity in human prostate carcinoma.
Cancer.
1995;
75
2545-2551
12
Jager G J, Ruijter E T, van de Kaa C A. et al .
Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate:
correlation with histopathologic results.
Radiology.
1997;
203
645-652
13
Rouviere O, Raudrant A, Ecochard R. et al .
Characterization of time-enhancement curves of benign and malignant prostate tissue
at dynamic MR imaging.
Eur Radiol.
2003;
13
931-942
14 Hebel R, Stromberg M W. Anatomy and Embryology of the Laboratory Rat. Wörthsee;
BioMed Verlag 1986: 75-76
15
Naik K S, Carey B M.
The transrectal ultrasound and MRI appearances of granulomatous prostatitis and its
differentiation from carcinoma.
Clin Radiol.
1999;
54
173-175
Ole Gemeinhardt
Institut für Radiologie, Charité - Universitätsmedizin Berlin, Campus Mitte
Schumannstraße 20/21
10117 Berlin
Phone: ++ 49/30/4 50 52 72 25
Fax: ++ 49/30/450 527 901
Email: ole.gemeinhardt@charite.de