Subscribe to RSS
DOI: 10.1055/s-2005-858548
© Georg Thieme Verlag KG Stuttgart · New York
CT-Koronarangiographie bei Patienten mit Vorhofflimmern
CT Coronary Angiography in Patients with Atrial FibrillationPublication History
Publication Date:
25 October 2005 (online)
Zusammenfassung
Ziel: Bisher konnte bei Patienten mit Vorhofflimmern (VHF) in der CT-Angiographie der Koronararterien (CTA) trotz EKG-Triggerung keine adäquate Bildqualität erzielt werden. Ziel der Arbeit war es, die Machbarkeit der CT-Angiographie unter Verwendung eines neuen, frequenzadaptierten Algorithmus bei Patienten mit VHF zu beurteilen sowie das optimale Rekonstruktionsintervall für die Darstellung der Koronararterien bei VHF zu ermitteln. Material und Methode: 20 Patienten mit permanentem VHF wurden an einem Multislice-CT untersucht (Kollmination: 16 × 0,75 mm; Rotationszeit 0,42 s; 140 kV; 380 mAs; 120 ml Ultravist 370® i. v.). Die HF der Patienten während der Untersuchung war zwischen 42 und 156 Schlägen pro Minute; mittlere HF 78 ± 23. Jedes Koronarsegment wurde in 10 %-Schritten innerhalb des RR-Intervalls rekonstruiert. Die Beurteilung der jeweiligen Rekonstruktion beinhaltete: 1. die Bildqualität (5-Punkte-Skala) und 2. das Vorliegen von Diameterstenosen der Koronararterien (5-Punkte-Skala). Korreliert wurde die Stenosegraduierung mit der Katheterkoronarangiographie. Ergebnisse: Die beste Bildqualität und der sicherste Stenosenachweis (Sensitivität: 83 % und Spezifität: 75 %) fand sich für den Rekonstruktionszeitpunkt bei 40 % des RR-Intervalls. Dieses endsystolische Rekonstruktionsintervall zeigte sich dem diastolischen Standardrekonstruktionsintervall von 80 % (Sensitivität: 64 %, Spezifität: 59 %) signifikant überlegen (p < 0,01). Die zweitbeste Bildqualität wurde bei 0 % des RR-Intervalls ermittelt. Schlussfolgerung: Ein frequenzangepasster Algorithmus und die Wahl eines endsystolischen Rekonstruktionsintervalls ermöglichen es, bei Patienten mit VHF in der Multislice-CT eine diagnostisch ausreichende Bildqualität zu erzielen.
Abstract
Purpose: Reliable visualization of the coronary arteries with multislice spiral CT angiography (MSCTA) in patients with atrial fibrillation (AF) remains a challenge despite retrospective ECG gating. A recently developed new algorithm automatically compensates dynamic changes in the heart rate during the scan, thus reducing misregistration and motion artifacts. The HeartBeat-RT algorithm combines a fixed-percent delay determined from the first R wave and the fixed offset delay based on the second R wave in the ECG cycle. The purpose of this study was to find out the optimal reconstruction window in MSCTA in patients with AF for each of the three major coronary arteries during the cardiac cycle. Materials and Methods: 20 patients with permanent AF were imaged on a 16-slice scanner (slice collimation: 16 × 0.75 mm; rotation time 0.42 s; 140 kV; 380 mAs; 120 ml Ultravist 370 ® i.v.). The patients had not received any previous drugs for heart frequency regulation. Acquisition was started after bolus tracking of a biphasic bolus of 120 ml Ultravist 370 injected intravenously. Each coronary segment was reconstructed at 0 % - 90 % of the cardiac cycle in increments of 10 %. For image analysis we used coronary segments as defined by the American Heart Association. Two blinded independent readers assessed the image quality in terms of visibility and artifacts (five-point rating scale 1 = very poor, 2 = poor, 3 = fair, 4 = good and 5 = excellent) and the degree of stenosis (five-point rating scale 1 = 0 %, 2 = 1 % - 49 %, 3 = 50 % - 74 %, 4 = 75 % - 99 %, 5 = 100 %) on axial slices, multiplanar reconstructions and three-dimensional volume-rendered images. Results: The heart rate during examination ranged between 42 and 156 beats per minute, the average heart rate was 78 ± 23. Each of the two readers evaluated 300 segments in 20 patients. Visualization of all coronary artery segments was superior at 40 % (mean score of the image quality 2.79) as compared to the standard diastolic reconstruction window at 80 % (image quality 2.33). The second best image quality (2.57) was acquired at 0 % of the cardiac cycle. Conclusion: The use of a frequency adapted delay algorithm with the choice of an end-systolic reconstruction window provided diagnostically valuable images in patients with AF.
Key words
Screening - coronary angiography - CT angiography - spiral CT - cardiac
- 1 Achenbach S, Ropers D, Holle J. et al . In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology. 2000; 177 457-463
- 2 Ohnesorge B, Flohr T, Becker C. et al . Cardiac imaging with rapid, retrospective ECG synchronized multilevel spiral CT. Radiologe. 2000; 177 111-117
- 3 Achenbach S, Ulzheimer S, Baum U. et al . Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation. 2000; 177 2823-2828
- 4 Achenbach S, Giesler T, Ropers D. et al . Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001; 177 2535-2538
- 5 Ropers D, Baum U, Pohle K. et al . Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation. 2003; 177 664-666
- 6 Nieman K, Cademartiri F, Lemos P A. et al . Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation. 2002; 177 2051-2054
- 7 Herzog C, Abolmaali N, Balzer J O. et al . Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol. 2002; 177 2670-2678
- 8 Leber A W, Knez A, Becker A. et al . Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004; 177 1241-1247
- 9 Hoffmann U, Moselewski F, Cury R C. et al . Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation. 2004; 177 2638-2643
- 10 Leber A W, Knez A, Becker C. et al . Non-invasive intravenous coronary angiography using electron beam tomography and multislice computed tomography. Heart. 2003; 177 633-639
- 11 Schoepf U J, Becker C R, Ohnesorge B M. et al . CT of coronary artery disease. Radiology. 2004; 177 18-37
- 12 Manzke R, Grass M, Nielsen T. et al . Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med Phys. 2003; 177 3072-3080
- 13 Herzog C, Ay M, Engelmann K. et al . Visualisierungsmodalitäten in der Multidetektor CT-Koronarangiographie des Herzens: Korrelation von axialer, multiplanarer, dreidimensionaler und virtuell endoskopischer Bildgebung mit der invasiven Diagnostik. Fortschr Röntgenstr. 2001; 177 341-349
- 14 Galanski M, Hijadat N, Maier W. et al .Strahlenexposition in der Computertomographie. Hamburg; CTB Publications 2002: 15-24
- 15 Vogl T J, Abolmaali N D, Diebold T. et al . Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. Radiology. 2002; 177 212-220
- 16 van Ooijen P M, Ho K Y, Dorgelo J. et al . Coronary artery imaging with multidetector CT: visualization issues. Radiographics. 2003; 177 e16
- 17 Austen W G, Edwards J E, Frye R L. et al . A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975; 177 5-40
- 18 Kopp A F, Schroeder S, Kuettner A. et al . Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window. Radiology. 2001; 177 683-688
- 19 Jakobs T F, Becker C R, Wintersperger B J. et al . CT angiography of the coronary arteries with a 16-row spiral tomograph. Effect of spatial resolution on image quality. Radiologe. 2002; 177 733-738
- 20 Lembcke A, Rogalla P, Mews J. et al . Darstellung der Koronararterien mittels Mehrschicht-Spiral-CT: Optimierung der Bildqualität mittels Multisegment-Rekonstruktion und variabler Gantry-Rotationszeit. Fortschr Röntgenstr. 2003; 177 780-785
- 21 Schmermund A, Rensing B J, Sheedy P F. et al . Intravenous electron-beam computed tomographic coronary angiography for segmental analysis of coronary artery stenoses. J Am Coll Cardiol. 1998; 177 1547-1554
- 22 ACC/AHA/ESC Guidelines for the Management of Patients With Atrial Fibrillation: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) Developed in Collaboration With the North American Society of Pacing and Electrophysiology. Circulation. 2001; 177 2118-2150
- 23 Furberg C D, Psaty B M, Manolio T A. et al . Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol. 1994; 177 236-241
- 24 ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Supraventricular Arrhythmias). Circulation. 2003; 177 1871-1909
- 25 Kannel W B, Abbott R D, Savage D D. et al . Coronary heart disease and atrial fibrillation: the Framingham Study. Am Heart J. 1983; 177 389-396
- 26 Krahn A D, Manfreda J, Tate R B. et al . The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med. 1995; 177 476-484
- 27 Cieslinski A, Hui W KK, Oldershaw P J. et al . Interaction between systolic and diastolic time intervals in atrial fibrillation. Br Heart J. 1984; 177 431-437
- 28 Becker C R, Knez A, Ohnesorge B. et al . Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. Am J Roentgenol. 2000; 177 423-424
- 29 Dewey M, Schnapauff D, Laule M. et al . Multislice CT coronary angiography: evaluation of an automatic vessel detection tool. Fortschr Röntgenstr. 2004; 177 478-483
- 30 Nieman K, Oudkerk M, Rensing B J. et al . Coronary angiography with multi-slice computed tomography. Lancet. 2001; 177 599-603
Dr. Attila Kovacs
Universitätsklinikum Bonn, Radiologische Klinik
Sigmund-Freud-Str. 25
53105 Bonn
Phone: ++ 49/2 28/2 87-61 62
Fax: ++ 49/2 28/2 87-60 93
Email: attila.kovacs@ukb.uni-bonn.de