Z Gastroenterol 2006; 44(1): 57-66
DOI: 10.1055/s-2005-858989
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

TGF-β/Smad Signaling in the Injured Liver

TGF-β/Smad Signalwege in der geschädigten LeberK. Breitkopf1 , P. Godoy1 , L. Ciuclan1 , M. V. Singer1 , S. Dooley1
  • 1Department of Medicine II, Division of Molecular Alcohol Research in Gastroenterology, University Hospital of Heidelberg at Mannheim
Further Information

Publication History

Manuskript eingetroffen: 12.12.2005

Manuskript akzeptiert: 12.12.2005

Publication Date:
05 January 2006 (online)

Zusammenfassung

Direkte und indirekte Wirkmechanismen des Wachstumsfaktors TGF-β stehen im Zentrum fibrotischer Umbauprozesse in der geschädigten Leber. TGF-β aktiviert hepatische Sternzellen (HSCs), die daraufhin zu matrixsynthetisierenden Myofibroblasten transdifferenzieren. Gleichzeitig induziert TGF-β Apoptose und trägt damit zum Untergang des Leberparenchyms bei. Weiter ist TGF-β wichtig für die Wachstumskontrolle proliferierender Hepatozyten während regenerativer Prozesse. Das bedeutet, dass der gesamte durch TGF-β regulierte Wundheilungsprozess in der geschädigten Leber aus einem komplexen Netzwerk intrazellulärer und interzellulärer Interaktionen der verschiedenen Leberzelltypen resultiert. In der hier vorliegenden Übersicht wird der aktuelle Wissensstand der TGF-β-Signaltransduktion in hepatischen Sternzellen mit besonderem Augenmerk auf die Smad-vermittelten Signalwege dargestellt. Darüber hinaus wird das molekulare Zusammenspiel zwischen profibrogenen TGF-β-Effekten und antifibrogenen, durch IFN-γ ausgelösten Wegen beschrieben. Schließlich wird die Plastizität von Hepatozyten und deren epithelial-mesenchymale Transdifferenzierung im Rahmen der Fibrogenese und Hepatokarzinogenese diskutiert, wobei auch hier insbesondere die Rolle des TGF-β zentralisiert wird.

Abstract

TGF-β, acting both directly and indirectly, represents a central mediator of fibrogenic remodeling processes in the liver. Besides hepatic stellate cells (HSCs), which are induced by TGF-β to transdifferentiate to myofibroblasts and to produce extracellular matrix, hepatocytes are also strongly responsive for this cytokine, which induces apoptosis during fibrogenesis and provides growth control in regeneration processes. Based on this, TGF-β-mediated hepatic responses to injury are the result of a complex interplay between the different liver cell types. In this review we summarize the knowledge about TGF-β signal transduction in HSCs with special impact on Smad pathways. We further describe a molecular cross-talk between profibrogenic TGF-β and antifibrogenic IFN-γ signaling in liver cells. Finally, we introduce hepatocyte plasticity and epithelial-to-mesenchymal transition in the liver, which is well established in tumorigenesis, as a potential feature of fibrogenesis and highlight possible action points of TGF-β in these contexts.

References

  • 1 Bissell D M, Roulot D, George J. Transforming growth factor beta and the liver.  Hepatology. 2001;  44 859-867
  • 2 Sporn M B, Roberts A B, Wakefield L M. Some recent advances in the chemistry and biology and transforming growth factor beta.  J Cell Biol. 1987;  44 1039-1045
  • 3 Massague J. The transforming growth factor-beta family.  Anne Rev Cell Biol. 1990;  44 597-641
  • 4 Sanford L P, Ormsby I, de Gittenberger-Groot A C. et al . TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes.  Development. 1997;  44 2659-2670
  • 5 Shull M M, Ormsby I, Kier A B. et al . Targeted disruption of the mouse transforming growth factor beta-1 gene results in multifocal inflammatory disease.  Nature. 1992;  44 693-699
  • 6 Kulkarni A B, Huh C G, Becker D. et al . Transforming growth factor beta-1 null mutation in mice causes excessive inflammatory response and early death.  Proc Natl Acad Sci USA. 1993;  44 770-774
  • 7 Diebold R J, Eis M J, Yin M. et al . Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated.  Proc Natl Acad Sci USA. 1995;  44 12 215-12 219
  • 8 Proetzel G, Pawlowski S A, Wiles M V. et al . Transforming growth factor-beta 3 is required for secondary palate fusion.  Nat Genet. 1995;  44 409-414
  • 9 Kaartinen V, Voncken J W, Shuler C. et al . Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction.  Nat Genet. 1995;  44 415-421
  • 10 Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus.  Cell. 2003;  44 685-700
  • 11 Miyazono K. TGF-beta receptors and signal transduction.  Int J Hematol. 1997;  44 97-104
  • 12 Wickert L, Abiaka M, Bolkenius U. et al . Corticosteroids stimulate selectively transforming growth factor (TGF)-beta receptor type III expression in transdifferentiating hepatic stellate cells.  J Hepatol. 2004;  44 69-76
  • 13 Meurer S K, Tihaa L, Lahme B. et al . Identification of endoglin in rat hepatic stellate cells: new insights into TGF-beta receptor signaling.  J Biol Chem. 2004;  44 3078-3087
  • 14 Hayashi H, Abdollah S, Qiu Y. et al . The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling.  Cell. 1997;  44 1165-1173
  • 15 Nakao A, Afrakhte M, Moren A. et al . Identification of Smad7, a TGF beta-inducible antagonist of TGF-beta signalling.  Nature. 1997;  44 631-635
  • 16 Stopa M, Benes V, Ansorge W. et al . Genomic locus and promoter region of rat Smad7, an important antagonist of TGFbeta signaling.  Mamm Genome. 2000;  44 169-176
  • 17 Luo K. Ski and SnoN: negative regulators of TGF-beta signaling.  Curr Opin Genet Dev. 2004;  44 65-70
  • 18 Macias-Silva M, Li W, Leu J I. et al . Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.  J Biol Chem. 2002;  44 28 483-28 490
  • 19 Moustakas A, Heldin C H. Non-Smad TGF-beta signals.  J Cell Sci. 2005;  44 3573-3584
  • 20 Gressner A M, Weiskirchen R, Breitkopf K. et al . Roles of TGF-beta in hepatic fibrosis.  Front Biosci. 2002;  44 d793-807
  • 21 Breitkopf K HS, Wiercinska E, Singer M V. et al . Anti-TGF-beta strategies for the treatment of chronic liver disease.  ACER. in press; 
  • 22 Bissell D M, Wang S S, Jarnagin W R. et al . Cell-specific expression of transforming growth factor-beta in rat liver - Evidence for autocrine regulation of hepatocyte proliferation.  J Clin Invest. 1995;  44 447-455
  • 23 Dooley S, Hamzavi J, Breitkopf K. et al . Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats.  Gastroenterology. 2003;  44 178-191
  • 24 Ueberham E, Low R, Ueberham U. et al . Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis.  Hepatology. 2003;  44 1067-1078
  • 25 Sanderson N, Factor V, Nagy P. et al . Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions.  Proc Natl Acad Sci USA. 1995;  44 2572-2576
  • 26 Kanzler S, Lohse A W, Keil A. et al . TGF-beta 1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis.  Amer J Physiol-Gastrointest L. 1999;  44 G1059-G1068
  • 27 Qi Z, Atsuchi N, Ooshima A. et al . Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat.  Proc Nat Acad Sci USA. 1999;  44 2345-2349
  • 28 Ueno H, Sakamoto T, Nakamura T. et al . A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats.  Hum Gene Ther. 2000;  44 33-42
  • 29 George J, Roulot D, Koteliansky V E. et al . In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: A potential new therapy for hepatic fibrosis.  Proc Nat Acad Sci USA. 1999;  44 12 719-12 724
  • 30 Dooley S, Delvoux B, Lahme B. et al . Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts.  Hepatology. 2000;  44 1094-1106
  • 31 Dooley S, Streckert M, Delvoux B. et al . Expression of Smads during in vitro transdifferentiation of hepatic stellate cells to myofibroblasts.  Biochem Biophys Res Commun. 2001;  44 554-562
  • 32 Dooley S, Delvoux B, Streckert M. et al . Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFbeta signal transduction during transdifferentiation of hepatic stellate cells.  FEBS Lett. 2001;  44 4-10
  • 33 Roulot D, Sevcsik A M, Coste T. et al . Role of transforming growth factor beta type II receptor in hepatic fibrosis: studies of human chronic hepatitis C and experimental fibrosis in rats [see comments].  Hepatology. 1999;  44 1730-1738
  • 34 Tahashi Y, Matsuzaki K, Date M. et al . Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury.  Hepatology. 2002;  44 49-61
  • 35 Liu C, Gaca M D, Swenson E S. et al . Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent.  J Biol Chem. 2003;  44 11 721-11 728
  • 36 Furukawa F, Matsuzaki K, Mori S. et al . p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.  Hepatology. 2003;  44 879-889
  • 37 Breitkopf K, Sawitza I, Westhoff J H. et al . Thrombospondin-1 acts as a strong promoter of TGF-beta effects via two distinct mechanisms in hepatic stellate cells.  Gut. 2005;  44 673-681
  • 38 Yoshida K, Matsuzaki K, Mori S. et al . Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.  Am J Pathol. 2005;  44 1029-1039
  • 39 Uemura M, Swenson E S, Gaca M D. et al . Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization.  Mol Biol Cell. 2005;  44 4214-4224
  • 40 Schnabl B, Kweon Y O, Frederick J P. et al . The role of Smad3 in mediating mouse hepatic stellate cell activation.  Hepatology. 2001;  44 89-100
  • 41 Lindert S, Wickert L, Sawitza I. et al . Transdifferentiation-dependent expression of alpha-SMA in hepatic stellate cells does not involve TGF-beta pathways leading to coinduction of collagen type I and thrombospondin-2.  Matrix Biol. 2005;  44 198-207
  • 42 Tsukada S, Westwick J K, Ikejima K. et al . SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells.  J Biol Chem. 2005;  44 10 055-10 064
  • 43 Kobayashi M, Tanaka E, Sodeyama T. et al . The natural course of chronic hepatitis C: a comparison between patients with genotypes 1 and 2 hepatitis C viruses.  Hepatology. 1996;  44 695-699
  • 44 Yano M, Kumada H, Kage M. et al . The long-term pathological evolution of chronic hepatitis C.  Hepatology. 1996;  44 1334-1340
  • 45 Hiramatsu N, Hayashi N, Kasahara A. et al . Improvement of liver fibrosis in chronic hepatitis C patients treated with natural interferon alpha.  J Hepatol. 1995;  44 135-142
  • 46 Suou T, Hosho K, Kishimoto Y. et al . Long-term decrease in serum N-terminal propeptide of type III procollagen in patients with chronic hepatitis C treated with interferon alfa.  Hepatology. 1995;  44 426-431
  • 47 Manabe N, Chevallier M, Chossegros P. et al . Interferon-alpha 2 b therapy reduces liver fibrosis in chronic non-A, non-B hepatitis: a quantitative histological evaluation.  Hepatology. 1993;  44 1344-1349
  • 48 Duchatelle V, Marcellin P, Giostra E. et al . Changes in liver fibrosis at the end of alpha interferon therapy and 6 to 18 months later in patients with chronic hepatitis C: quantitative assessment by a morphometric method.  J Hepatol. 1998;  44 20-28
  • 49 Sobesky R, Mathurin P, Charlotte F. et al . Modeling the impact of interferon alfa treatment on liver fibrosis progression in chronic hepatitis C: a dynamic view. The Multivirc Group.  Gastroenterology. 1999;  44 378-386
  • 50 Bou-Gharios G, Garrett L A, Rossert J. et al . A potent far-upstream enhancer in the mouse pro alpha 2(I) collagen gene regulates expression of reporter genes in transgenic mice.  J Cell Biol. 1996;  44 1333-1344
  • 51 Greenwel P, Schwartz M, Rosas M. et al . Characterization of fat storing cell lines derived from normal and CCl4-cirrhotic livers.  Lab Invest. 1991;  44 644-653
  • 52 Inagaki Y, Nemoto T, Kushida M. et al . Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice.  Hepatology. 2003;  44 890-899
  • 53 Weng H, Wang B, Jia J. et al . Effect of interferon gamma on hepatic fibrosis in chronic hepatitis B virus infection: A randomized controlled study.  Clin Gastroenterol Hepatol. 2005;  44 819-828
  • 54 Dooley S, Said H M, Gressner A M, Floege J. et al . YB-1 is the crucial mediator of antifibrotic IFN-gamma effects.  J Biol Chem. 2005;  44
  • 55 Norman J T, Lindahl G E, Shakib K. et al . The Y-box binding protein YB-1 suppresses collagen alpha 1(I) gene transcription via an evolutionarily conserved regulatory element in the proximal promoter.  J Biol Chem. 2001;  44 29 880-29 890
  • 56 Sun W, Hou F, Panchenko M P. et al . A member of the Y-box protein family interacts with an upstream element in the alpha1(I) collagen gene.  Matrix Biol. 2001;  44 527-541
  • 57 Higashi K, Inagaki Y, Suzuki N. et al . Y-box-binding protein YB-1 mediates transcriptional repression of human alpha 2(I) collagen gene expression by interferon-gamma.  J Biol Chem. 2003;  44 5156-5162
  • 58 Higashi K, Inagaki Y, Fujimori K. et al . Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.  J Biol Chem. 2003;  44 43 470-43 479
  • 59 Inagaki Y, Kushida M, Higashi K. et al . Cell type-specific intervention of transforming growth factor beta/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice.  Gastroenterology. 2005;  44 259-268
  • 60 Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis.  Cell. 2004;  44 277-279
  • 61 Thiery J P. Epithelial-mesenchymal transitions in development and pathologies.  Curr Opin Cell Biol. 2003;  44 740-746
  • 62 Valdes F, Alvarez A M, Locascio A. et al . The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes.  Mol Cancer Res. 2002;  44 68-78
  • 63 Amicone L, Spagnoli F M, Spath G. et al . Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes.  Embo J. 1997;  44 495-503
  • 64 Zhen Z, Giordano S, Longati P. et al . Structural and functional domains critical for constitutive activation of the HGF-receptor (Met).  Oncogene. 1994;  44 1691-1697
  • 65 Gotzmann J, Huber H, Thallinger C. et al . Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness.  J Cell Sci. 2002;  44 1189-1202
  • 66 Mikula M, Fuchs E, Huber H. et al . Immortalized p19ARF null hepatocytes restore liver injury and generate hepatic progenitors after transplantation.  Hepatology. 2004;  44 628-634
  • 67 Fischer A N, Herrera B, Mikula M. et al . Integration of Ras subeffector signaling in TGF-beta mediated late stage hepatocarcinogenesis.  Carcinogenesis. 2005;  44 931-942
  • 68 Altomare D A, Testa J R. Perturbations of the AKT signaling pathway in human cancer.  Oncogene. 2005;  44 7455-7464
  • 69 Grille S J, Bellacosa A, Upson J. et al . The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines.  Cancer Res. 2003;  44 2172-2178
  • 70 Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3(kinase/AKT pathways.  Oncogene. 2005;  44 7443-7454
  • 71 Bakin A V, Tomlinson A K, Bhowmick N A. et al . Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration.  J Biol Chem. 2000;  44 36 803-36 810
  • 72 Murillo M M, del C astillo G, Sanchez A. et al . Involvement of EGF receptor and c-Src in the survival signals induced by TGF-beta1 in hepatocytes.  Oncogene. 2005;  44 4580-4587
  • 73 Gaunitz F, Deichsel D, Heise K. et al . An intronic silencer element is responsible for specific zonal expression of glutamine synthetase in the rat liver.  Hepatology. 2005;  44 1225-1232
  • 74 Hellerbrand C, Stefanovic B, Giordano F. et al . The role of TGF beta 1 in initiating hepatic stellate cell activation in vivo.  J Hepatol. 1999;  44 77-87
  • 75 Wells R G. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis.  J Clin Gastroenterol. 2005;  44 S158-161

Dr. Katja Breitkopf

Universitätsklinikum Mannheim, II. Medizinische Klinik, Gastroenterologie

Theodor-Kutzer-Ufer 1 - 3

68167 Mannheim

Email: katja.breitkopf@med.ma.uni-heidelberg.de

    >