Anästhesiol Intensivmed Notfallmed Schmerzther 2005; 40(6): 354-357
DOI: 10.1055/s-2005-861246
Die Kontroverse
© Georg Thieme Verlag KG Stuttgart · New York

Routinemäßige Verwendung hoher inspiratorischer Sauerstoffkonzentrationen - Kontra

Routine Use of High Inspired Oxygen Concentration - ConS.  Suttner1 , J.  Boldt1
  • 1 Klinik für Anästhesie und Operative Intensivmedizin (Direktor: Prof. Dr. med. J. Boldt), Klinikum der Stadt Ludwigshafen
Further Information

Publication History

Publication Date:
08 June 2005 (online)

Einleitung

„Alle Ding′ sind Gift und nichts ohn′ Gift; allein die Dosis macht das Gift.”

Erst die Dosis unterscheidet das Gift vom Heilmittel: Dies stellte schon der bekannte Arzt und Philosoph Theophrast von Hohenheim (Paracelsus, 1493 - 1541) fest. Selbst der lebensnotwendige Sauerstoff kann in hohen Konzentrationen toxisch sein und Organfunktionen negativ beeinflussen. So schrieb der britische Naturforscher Joseph Priestley (1733 - 1804) kurz nach der Entdeckung des Elements Sauerstoff: „… as a candle burns out much faster in dephlogisticated air (oxygen), so we might live out too fast, and the animal powers be too soon exhausted in this pure kind of air …” [1].

Für das Auftreten von Sauerstoffnebenwirkungen sind generell der inspiratorische Sauerstoffpartialdruck und die Expositionsdauer von entscheidender Bedeutung [2].

Literatur

  • 1 Priestley J. Experiments and Observations on Different Kinds of Air. 2nd ed. Vol 2, sec 3 “the Discovery of Oxygen“. Pearson 1776
  • 2 Jenkinson S G. Oxygen toxicity.  New Horiz. 1993;  1 504-511
  • 3 Kerr M E, Bender C M, Monti E J. An introduction to oxygen free radicals.  Heart Lung. 1996;  25 200-209
  • 4 Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease.  Am J Med. 1991;  91 14S-22S
  • 5 Goode H F, Webster N R. Free radicals and antioxidants in sepsis.  Crit Care Med. 1993;  21 1770-1776
  • 6 Bulkley G B. Free radicals and other reactive oxygen metabolites: clinical relevance and the therapeutic efficacy of antioxidant therapy.  Surgery. 1993;  113 479-483
  • 7 Cerutti P A. Oxy-radicals and cancer.  Lancet. 1994;  344 862-863
  • 8 Kloner R A, Przyklenk K, Whittaker P. Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues.  Circulation. 1989;  80 1115-1127
  • 9 Grace P A. Ischaemia-reperfusion injury.  Br J Surg. 1994;  81 637-647
  • 10 Griendling KK, FitzGerald G A. Oxidative stress and cardiovascular injury - part 1: Basic mechanisms and in vitro monitoring of ROS.  Circulation. 2003;  108 1912-1916
  • 11 Deneke S M, Fanburg B L. Normobaric oxygen toxicity of the lung.  N Engl J Med. 1980;  303 76-86
  • 12 Carvalho C R, de Paula Pinto Schettino G, Maranhao B, Bethlem E P. Hyperoxia and lung disease.  Curr Opin Pulm Med. 1998;  4 300-304
  • 13 Capellier G, Maupoil V, Boussat S, Laurent E, Neidhardt A. Oxygen toxicity and tolerance.  Minerva Anestesiol. 1999;  65 388-392
  • 14 Johnston C J, Wright T W, Reed C K, Finkelstein J N. Comparison of adult and newborn pulmonary cytokine mRNA expression after hyperoxia.  Exp Lung Res. 1997;  23 537-552
  • 15 Smith L J. Hyperoxic lung injury: biochemical, cellular, and morphologic characterization in the mouse.  J Lab Clin Med. 1985;  106 269-278
  • 16 Stuhr L E, Gjerde E A, Thorsen E, Reed R K. Effects of normobaric hyperoxia on water content in different organs in the rat.  Acta Physiol Scand. 2002;  176 13-16
  • 17 Hesse A K, Dorger M, Kupatt C, Krombach F. Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury.  Respir Res.. 2004;  5 11-15
  • 18 Shea L M, Beehler C, Schwartz M, Shenkar R, Tuder R, Abraham E. Hyperoxia activates NF-kappaB and increases TNF-alpha and IFN-gamma gene expression in mouse pulmonary lymphocytes.  J Immunol. 1996;  157 3902-3908
  • 19 Chabot F, Mitchell J A, Gutteridge J M, Evans T W. Reactive oxygen species in acute lung injury.  Eur Respir J. 1998;  11 745-757
  • 20 Smith R M, Mohideen P. One hour in 1 ATA oxygen enhances rat alveolar macrophage chemiluminescence and fungal cytotoxicity.  Am J Physiol. 1991;  260 L457-463
  • 21 Pepperl S, Dorger M, Ringel F, Kupatt C, Krombach F. Hyperoxia upregulates the NO pathway in alveolar macrophages in vitro: role of AP-1 and NF-kappa B.  Am J Physiol Lung Cell Mol Physiol. 2001;  280 L905-L913
  • 22 Zenri H, Rodriquez-Capote K, McCaig L, Yao L J, Brackenbury A, Possmayer F, Veldhuizen R, Lewis J. Hyperoxia exposure impairs surfactant function and metabolism.  Crit Care Med. 2004;  32 1155-1160
  • 23 Lewis J, Veldhuizen R. Ventilation and oxygen: just what the doctor ordered … unfortunately.  Crit Care Med. 2004;  32 2556-2557
  • 24 Sinclair S E, Altemeier W A, Matute-Bello G, Chi E Y. Augmented lung injury due to interaction between hyperoxia and mechanical ventilation.  Crit Care Med. 2004;  32 2496-2501
  • 25 Knight P R, Kurek C, Davidson B A, Nader N D, Patel A, Sokolowski J, Notter R H, Holm B A. Acid aspiration increases sensitivity to increased ambient oxygen concentrations.  Am J Physiol Lung Cell Mol Physiol. 2000;  278 L1240-1247
  • 26 Knight P R, Holm B A. The three components of hyperoxia.  Anesthesiology. 2000;  93 3-5
  • 27 Winter P M, Smith G. The toxicity of oxygen.  Anesthesiology. 1972;  37 210-241
  • 28 Tibbles P M, Edelsberg J S. Hyperbaric oxygen therapy.  N Engl J Med. 196;  334 1642-1648
  • 29 Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia.  Anesthesiology. 2003;  98 28-33
  • 30 Hedenstierna G, Edmark L, Aherdan K K. Time to reconsider the pre-oxygenation during induction of anaesthesia.  Minerva Anestesiol. 2000;  66 293-296
  • 31 Neumann P, Rothen H U, Berglund J E, Valtysson J, Magnusson A, Hedenstierna G. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration.  Acta Anaesthesiol Scand. 1999;  43 295-301
  • 32 Reber A, Engberg G, Wegenius G, Hedenstierna G. Lung aeration. The effect of pre-oxygenation and hyperoxygenation during total intravenous anaesthesia.  Anaesthesia.. 1996;  51 733-737
  • 33 Rothen H U, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Atelectasis and pulmonary shunting during induction of general anaesthesia - can they be avoided?.  Acta Anaesthesiol Scand. 1996;  40 524-529
  • 34 Max M, Dembinski R. Pulmonaler Gasaustausch in Narkose.  Anaesthesist. 2000;  49 771-783
  • 35 Benoit Z, Wicky S, Fischer J F. et al . The effect of increased FiO2 before tracheal extubation on postoperative atelectasis.  Anesth Analg. 2002;  95 1777-1781
  • 36 Jandeck C, Kellner U, Foerster M H. Ocular changes in premature infants.  Ophthalmologe. 2000;  97 799-818
  • 37 Ashton N. Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies.  Am J Ophthalmol. 1966;  62 412-435
  • 38 Ben Sira I, Nissenkorn I, Kremer I. Retinopathy of prematurity.  Surv Ophthalmol. 1988;  33 1-16
  • 39 Dowdeswell H J, Slater A M, Broomhall J, Tripp J. Visual deficits in children born at less than 32 weeks' gestation with and without major ocular pathology and cerebral damage.  Br J Ophthalmol. 1995;  79 447-452
  • 40 Penn J S, Tolman B L, Lowery L A. Variable oxygen exposure causes preretinal neovascularization in the newborn rat.  Invest Ophthalmol Vis Sci. 1993;  34 576-585

Dr. Stefan Suttner

Klinik für Anästhesie und Operative Intensivmedizin

Klinikum der Stadt Ludwigshafen · Bremser Straße 79 · 67063 Ludwigshafen

Email: suttner@gmx.de

    >