Abstract
For the first time, homo-Mannich reactions with unmasked homoenolates have been achieved
by adding homoenolate precursor 1 and imines 5 . The key to this reaction is the right choice of the Lewis acids - Cu(OTf)2 proved to be most suitable for preparing the homoenolate and activation of the imine.
An asymmetric catalytic version of this reaction is provided by using chiral, non-racemic
phenyl-derived bisoxazolidine as ligand for the Lewis acid.
Key words
asymmetric catalysis - amino acids - Lewis acids - homoenolates - Mannich reaction
References
<A NAME="RG21304ST-1A">1a </A>
Arend M.
Westermann B.
Risch N.
Angew. Chem. Int. Ed.
1998,
37:
1045 ; Angew. Chem. 1998 , 110 , 1097
<A NAME="RG21304ST-1B">1b </A>
Arend M.
Angew. Chem. Int. Ed.
1999,
38:
2873 ; Angew. Chem. 1999 , 111 , 3047
<A NAME="RG21304ST-1C">1c </A>
Denmark SE.
Nicaise OJC. In Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
1999.
p.923
<A NAME="RG21304ST-2A">2a </A>
Kobayashi S.
Ishitani H.
Chem. Rev.
1999,
99:
1069
<A NAME="RG21304ST-2B">2b </A>
Yamasaki S.
Iida T.
Shibasaki M.
Tetrahedron Lett.
1999,
40:
307
<A NAME="RG21304ST-2C">2c </A>
Ishitani H.
Ueno M.
Kobayashi S.
J. Am. Chem. Soc.
2000,
122:
8180
<A NAME="RG21304ST-2D">2d </A>
List B.
J. Am. Chem. Soc.
2000,
122:
9336
<A NAME="RG21304ST-2E">2e </A>
Juhl K.
Gathergood N.
Jørgensen KA.
Angew. Chem. Int. Ed.
2001,
40:
2995 ; Angew. Chem. 2001 , 113 , 3083;
<A NAME="RG21304ST-2F">2f </A>
Notz W.
Sakthivel K.
Bui T.
Zhong GF.
Barbas CF.
Tetrahedron Lett.
2001,
42:
199
<A NAME="RG21304ST-2G">2g </A>
List B.
Pojarliev P.
Biller WT.
Martin HJ.
J. Am. Chem. Soc.
2002,
124:
827
<A NAME="RG21304ST-2H">2h </A>
Trost BM.
Terell LR.
J. Am. Chem. Soc.
2003,
125:
338
<A NAME="RG21304ST-3A">3a </A> Review:
Crimmins MT.
Nantermet PG.
Org. Prep. Proced. Int.
1993,
25:
41
<A NAME="RG21304ST-3B">3b </A> Review:
Hoppe D.
Hense T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2283 ; Angew. Chem. 1997 , 109 , 2377
<A NAME="RG21304ST-3C">3c </A> Review:
Ahlbrecht H.
Beyer U.
Synthesis
1999,
365
<A NAME="RG21304ST-3D">3d </A>
Nakamura E.
Kuwajima I.
J. Am. Chem. Soc.
1985,
107:
2138
<A NAME="RG21304ST-3E">3e </A>
McWilliams JC.
Armstrong JD.
Zheng N.
Bhupathy M.
Volante RP.
Reider PJ.
J. Am. Chem. Soc.
1996,
118:
11970
<A NAME="RG21304ST-3F">3f </A>
DeCamp AE.
Kawaguchi AT.
Volante RP.
Shinkai I.
Tetrahedron Lett.
1991,
32:
1867
<A NAME="RG21304ST-3G">3g </A>
Burke ED.
Lim NK.
Gleason JL.
Synlett
2003,
390
<A NAME="RG21304ST-4">4 </A>
Westermann B.
Krebs B.
Org. Lett.
2001,
3:
189
γ-Amino acids have gained considerable attention due to their helix forming properties
when incorporated in peptides. See:
<A NAME="RG21304ST-5A">5a </A>
Hintermann T.
Gademann K.
Jaun B.
Seebach D.
Helv. Chim. Acta
1998,
81:
983
<A NAME="RG21304ST-5B">5b </A>
Seebach D.
Beck AK.
Brenner M.
Gaul C.
Heckel A.
Chimia
2001,
55:
831
<A NAME="RG21304ST-6">6 </A> A formal homoamino methylation was described in:
Reissig H.-U.
Lorey H.
Liebigs Ann. Chem.
1986,
1914
<A NAME="RG21304ST-7A">7a </A>
Nakamura E.
Shimada J.
Kuwajima I.
Organometallics
1985,
4:
641
<A NAME="RG21304ST-7B">7b </A>
Nakamura E.
Oshino H.
Kuwajima I.
J. Am. Chem. Soc.
1986,
108:
3745
<A NAME="RG21304ST-7C">7c </A>
Nakamura E.
Aoki S.
Sekiya K.
Oshino H.
Kuwajima I.
J. Am. Chem. Soc.
1987,
109:
8056
<A NAME="RG21304ST-8A">8a </A>
Ghosh AK.
Mathivanan P.
Cappiello J.
Tetrahedron: Asymmetry
1998,
9:
1
<A NAME="RG21304ST-8B">8b </A>
Jørgensen KA.
Johannsen M.
Yao S.
Audrian H.
Thorauge J.
Acc. Chem. Res.
1999,
32:
605
<A NAME="RG21304ST-8C">8c </A>
Johnson JS.
Evans DA.
Acc. Chem. Res.
2000,
33:
325
<A NAME="RG21304ST-9A">9a </A>
Adams H.
Anderson JC.
Peace S.
Pennell AMK.
J. Org. Chem.
1998,
63:
9932
<A NAME="RG21304ST-9B">9b </A>
Anderson JC.
Peace S.
Pih S.
Synlett
2000,
850
<A NAME="RG21304ST-10A">10a </A>
Vogt A,
Altenbach H.-J,
Kirschbaum M,
Hahn MG,
Matthäus MSP, and
Herrmann AR. inventors; EP 976721.
; Chem. Abstr. 2000 , 132 , 108296
<A NAME="RG21304ST-10B">10b </A>
Altenbach H.-J.
Hahn MG.
Matthäus MSP.
12 thInternational Conference on Organic Synthesis
Venice;
Italy:
1998.
p.OC-68
<A NAME="RG21304ST-11">11 </A>
Experimental Procedures;
Procedure for the Cu(OTf)
2
-Catalyzed Homoenolate Addition to Imine 5.
In an inert atmosphere [(1-ethoxycyclopropyl)oxy]tri-methylsilane (1 , 250 µL, 1.21 mmol, 1.3 equiv) was added to a stirred mixture of Cu(OTf)2 (37 mg, 0.7 mmol) in THF (3 mL) at -78 °C. Imine 5 (207 mg, 1.0 mmol) was dissolved in 1.0 mL of THF and added to the reaction mixture.
Stirring was continued for 18 h at r.t. The reaction was quenched with EtOH (1-2 mL),
concentrated, the residue dissolved in CH2 Cl2 (2 mL) and filtered over a small bed of silica gel using CH2 Cl2 (20 mL) as eluent. Evaporation of the solvent under reduced pressure afforded the
crude reaction product 6 , which was purified by column chromatography. R
f
= 0.6 (silica gel, petrol ether-EtOAc, 1:1, TLC developed twice). The separation of the enantiomers was carried out with a Daicel Chiralcel OD-H column
(hexane-i -PrOH, 8:2; c
analyt 0.1 mg/mL; flow rate 0.5 mL/min, λ 254 nm); t
R1 = 14.87 min; t
R2 = 16.28 min.
Procedure of the BOX-Catalyzed Reaction.
In an oven dried 50 mL flask equipped with a magnetic stirring bar, Cu(OTf)2 (35.5 mg, 0.1 mmol) and (S ,S )-2,2-isopropylidene-bis-(4-phenyl-2-oxazoline) (8 , 38 mg, 0.11 mmol) were added. The mixture was stirred under high vacuum for 2 h
and then filled with dry argon. Dry THF (5 mL, distilled over Na and LiAlH4 ) was added and the solution was stirred for 4 h. Imine 5 (207 mg, 1.0 mmol) was dissolved in 1-2 mL of dry THF and added dropwise followed
by hemiacetal 1 (250 µL, 1.21 mmol) at -78 °C. Stirring was continued for 72 h at r.t. and then the
reaction was quenched with EtOH (1-2 mL), concentrated and the residue dissolved in
CH2 Cl2 (2 mL), filtered over a small pad of silica gel using CH2 Cl2 (20 mL) as eluent. Evaporation of the solvent under reduced pressure afforded the
crude product 6 , which was purified by column chromatography (silica gel, n -hexane-EtOAc, 1:1).