References
<A NAME="RD35104ST-1">1</A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RD35104ST-2">2</A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
<A NAME="RD35104ST-3">3</A>
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
<A NAME="RD35104ST-4">4</A>
Poulsen CS.
Madsen R.
Synthesis
2003,
1
<A NAME="RD35104ST-5">5</A>
Diver ST.
Giessert AJ.
Chem. Rev.
2004,
104:
1317
<A NAME="RD35104ST-6">6</A>
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239
<A NAME="RD35104ST-7">7</A>
Rivard M.
Blechert S.
Eur. J. Org. Chem.
2003,
2225
<A NAME="RD35104ST-8A">8a</A>
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
<A NAME="RD35104ST-8B">8b</A>
Felpin F.-X.
Lebreton J.
Eur. J. Org. Chem.
2003,
3693
<A NAME="RD35104ST-8C">8c</A>
Ono K.
Nagata T.
Nishida A.
Synlett
2003,
1207
<A NAME="RD35104ST-8D">8d</A>
Humphries ME.
Murphy J.
Phillips AJ.
Abell AD.
J. Org. Chem.
2003,
68:
2432
<A NAME="RD35104ST-8E">8e</A>
Habib-Zahmani H.
Hacini S.
Charonnet E.
Rodriguez J.
Synlett
2002,
1827
<A NAME="RD35104ST-8F">8f</A>
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
<A NAME="RD35104ST-8G">8g</A>
Diedrichs N.
Westermann B.
Synlett
1999,
1127
<A NAME="RD35104ST-8H">8h</A>
Irie O.
Samizu K.
Henry JR.
Weinreb SM.
J. Org. Chem.
1999,
64:
587
<A NAME="RD35104ST-9A">9a</A>
Jun JH.
Dougherty JM.
del Sol Jimenez M.
Hanson PR.
Tetrahedron
2003,
59:
8901
<A NAME="RD35104ST-9B">9b</A>
Karsch S.
Freitag D.
Schwab P.
Metz P.
Synthesis
2004,
1696
<A NAME="RD35104ST-10A">10a</A>
Grigg R.
Sridharan V.
York M.
Tetrahedron Lett.
1998,
39:
4139
<A NAME="RD35104ST-10B">10b</A>
Grigg R.
York M.
Tetrahedron Lett.
2000,
41:
7255
<A NAME="RD35104ST-10C">10c</A>
Evans P.
McCabe T.
Morgan BS.
Reau S.
Org. Lett.
2005,
7:
43
<A NAME="RD35104ST-11A">11a</A>
Bressy C.
Piva O.
Synlett
2003,
87
<A NAME="RD35104ST-11B">11b</A>
Virolleaud MA.
Bressy C.
Piva O.
Tetrahedron Lett.
2003,
44:
8081
<A NAME="RD35104ST-11C">11c</A>
Virolleaud MA.
Piva O.
Synlett
2004,
2087
<A NAME="RD35104ST-12A">12a</A>
Clive DLJ.
Cheng H.
Chem. Commun.
2001,
605
<A NAME="RD35104ST-12B">12b</A>
Quayle P.
Fengas D.
Richards S.
Synlett
2003,
1797
<A NAME="RD35104ST-13">13</A>
Alcaide B.
Almendros P.
Chem.-Eur. J.
2003,
9:
1258 ; and references therein
<A NAME="RD35104ST-14">14</A>
Sutton AE.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
<A NAME="RD35104ST-15A">15a</A>
Schmidt B.
Eur. J. Org. Chem.
2003,
816
<A NAME="RD35104ST-15B">15b</A>
Schmidt B.
Chem. Commun.
2004,
742
<A NAME="RD35104ST-15C">15c</A>
Schmidt B.
Eur. J. Org. Chem.
2004,
1865
<A NAME="RD35104ST-15D">15d</A>
Schmidt B.
J. Org. Chem.
2004,
69:
7672
<A NAME="RD35104ST-16">16</A>
Preparation of the N
,
N
-Bisallylamides 2.
To a solution of acid (2 mmol) in CH2Cl2 (4 mL) were successively added DMAP (0.073 g, 0.6 mmol) and bisallylamine (0.195
g, 2 mmol). The reaction was next cooled to 0 °C and a solution of dicyclohexylcarbodiimide
(0.412 g, 2 mmol) in the same solvent (1 mL) was added dropwise. After stirring 10
min at 0 °C, the ice-water bath was removed and the mixture stirred overnight at r.t.
Urea was filtered off and the solvent removed by concentration under vacuo. Amide
2 was obtained pure by flash chromatography (eluent: EtOAc-hexanes 10:90).
Compound 2a (95%): 1H NMR (CDCl3): δ = 3.65 (d, J = 4.5 Hz, 2 H), 3.75 (dd, J = 15.2, 6.8 Hz, 1 H), 4.48 (dd, J = 15.2, 3.7 Hz, 1 H), 5.03 (dd, J = 1.3, 16.9 Hz, 1 H), 5.10 (dd, J = 11.5, 1.3 Hz, 1 H), 5.18 (dd, J = 10.1, 1.3 Hz, 1 H), 5.23 (dd, J = 17.9, 1.3 Hz, 1 H), 5.59 (ddt, J = 16.9, 10.1, 5.8 Hz, 1 H), 5.83 (ddt, J = 16.9, 10.1, 5.4 Hz, 1 H), 7.13-7.31 (m, 3 H), 7.50 (d, J = 7.9 Hz, 1 H). 13C NMR (CDCl3): δ = 46.70, 50.60, 118.50, 118.51, 119.50, 127.90, 128.00, 130.60, 132.80, 133.00,
133.20, 138.50, 169.40. IR (film): 3080, 2923, 1637, 1415, 1285, 1115, 995, 925, 770
cm-1.
Compound 2d (63%): 1H NMR (CDCl3): δ = 3.74 (d, J = 5.6 Hz, 2 H), 3.80 (m, 1 H), 4.35-4.55 (m, 1 H), 5.11 (ddt, J = 17.0, 1.5, 1.5 Hz, 1 H), 5.18 (ddt, J = 10.2, 1.5, 1.5 Hz, 1 H), 5.23 (ddt, J = 10.4, 1.5, 1.5 Hz, 1 H), 5.27 (ddt, J = 15.6, 1.5, 1.5 Hz, 1 H), 5.67 (ddt, J = 17.0, 10.4, 5.6 Hz, 1 H), 5.87 (ddt, J = 16.4, 10.2, 6.0 Hz, 1 H), 6.00 (s, 2 H), 6.71 (s, 1 H), 6.98 (s, 1 H). 13C NMR (CDCl3): δ = 46.7, 50.5, 102.4, 107.8, 110.4, 113.1, 118.4, 131.3, 132.6, 133.0, 147.7,
149.1, 168.9. HRMS: m/z calcd [MH+]: 324.02353; found: 324.02315.
To a solution of N-allyl-2-bromobenzene sulphonamide (5a, 276 mg, 1 mmol) in MeCN (4 mL) was added 4-bromo-butene (148 mg, 1.1 mmol) and K2CO3 (553 mg, 4 mmol). The resulting suspension was heated for 16 h. After filtration
and concentration, the product was purified by flash chromatography (eluent: EtOAc-hexanes
10:90).
Compound 5c (86%): 1H NMR (CDCl3): δ = 2.27 (t, J = 7.4 Hz, 2 H), 3.36 (t, J = 7.4 Hz, 2 H), 3.99 (d, J = 6.4 Hz, 2 H), 4.95-5.15 (m, 2 H), 5.15-5.35 (m, 2 H), 5.59-5.85 (m, 2 H), 7.37
(dt, J = 1.8, 7.5 Hz, 1 H), 7.45 (dt, J = 1.8, 7.5 Hz, 1 H), 7.75 (dd, J = 7.5, 1.3 Hz, 1 H), 8.18 (dd, J = 8.7, 2.1 Hz, 1 H). 13C NMR (CDCl3): δ = 32.7, 46.6, 50.3, 117.5, 119.3, 120.7, 127.9, 132.5, 133.4, 133.9, 134.8, 136.0,
139.8. IR (film): 3070, 2985, 1640, 1575, 1445, 1340, 1155, 915, 755 cm-1.
<A NAME="RD35104ST-17">17</A>
Rigby JH.
Cavezza A.
Heeg MJ.
J. Am. Chem. Soc.
1998,
120:
3664
<A NAME="RD35104ST-18">18</A>
Meyers AI.
Flisak JR.
Aitken RA.
J. Am. Chem. Soc.
1987,
109:
5446
<A NAME="RD35104ST-19">19</A>
Brown E.
Robin J.-P.
Dhal R.
Tetrahedron
1982,
38:
2569
<A NAME="RD35104ST-20">20</A>
Selvamurugan V.
Aidhen IS.
Synthesis
2001,
2239
<A NAME="RD35104ST-21">21</A>
Metathesis and Isomerization of Amides 2, Typical Procedure.
To a solution of amide 2a (140 mg, 0.5 mmol) in toluene was added first generation Grubbs’ catalyst (11 mg,
2.5% mol). After stirring at r.t. for 1 h and complete disappearance of the starting
material, NaH (7 mg, 1.5 mmol) was added at once and the mixture was heated to reflux.
A new addition of both Grubbs’ catalyst (11 mg, 2.5% mol) and NaH (7 mg, 1.5 mmol)
was performed after 12 h of heating and this sequence was repeated three times more.
After cooling to r.t., the solvent was removed by concentration and the resulting
crude mixture was purified by flash chromatography on silica (eluent: hexanes-EtOAc
7:3).
Compound 7a (72%): 1H NMR (CDCl3) 2 rotamers (ratio 4.2:1): δ (major rotamer) = 2.76 (dt, J = 8.6, 2.4 Hz, 2 H), 4.07 (t, J = 9.0 Hz, 2 H), 5.23 (dt, J = 4.3, 2.4 Hz, 1 H), 6.02 (dt, J = 6.4, 1.2 Hz, 1 H), 7.35 (m, 3 H), 7.60 (d, J = 7.5 Hz, 1 H); δ (minor rotamer) = 2.76 (dt, J = 8.6, 2.4 Hz, 2 H), 3.58 (t, J = 9.0 Hz, 2 H), 5.42 (dt, J = 4.3, 2.4 Hz, 1 H), 7.11 (dt, J = 6.4, 2.1 Hz, 1 H), 7.35 (m, 3 H), 7.60 (d, J = 7.5 Hz, 1 H). 13C NMR (CDCl3): δ (major rotamer) = 27.6, 43.8, 111.8, 118.4, 126.7, 127.4, 128.6, 129.7, 131.9,
136.9, 173.4;
δ (minor rotamer) = 28.8, 45.7, 111.8, 117.7, 126.7, 127.4, 128.6, 129.7, 131.9, 137.6,
173.4. IR (film): 3065, 2955, 1645, 1420, 1045, 1025, 830 cm-1. HRMS: m/z calcd [MH+]: 252.00240; found: 252.00229.
Compound 7d (71%): yellow oil. 1H NMR (CDCl3): δ = 2.73 (dt, J = 6.0, 0.8 Hz, 2 H), 4.01 (t, J = 8.3 Hz, 2 H), 5.22 (dt, J = 5.3, 2.6 Hz, 1 H), 6.02 (s, 2 H), 6.06 (dt, J = 4.3, 2.1 Hz, 1 H), 6.80 (s, 1 H), 7.01 (s, 1 H). 13C NMR (CDCl3): δ = 28.9, 45.1, 102.4, 108.2, 108.5, 110.9, 113.0, 113.1, 130.0, 147.7, 149.4,
164.5. HRMS: m/z calcd [MH+]: 294.98441; found: 294.98497.
<A NAME="RD35104ST-22A">22a</A>
Kinderman SS.
van Maarseveen JH.
Schoemaker HE.
Hiemstra H.
Rutjes FPJT.
Org. Lett.
2001,
3:
2045
<A NAME="RD35104ST-22B">22b</A>
Katz JD.
Overman LE.
Tetrahedron
2004,
60:
9559
<A NAME="RD35104ST-23A">23a</A>
Renaud P.
Sibi MP.
Radicals in Organic Synthesis
Vol. 1:
Wiley VCH;
Weinheim:
2001.
<A NAME="RD35104ST-23B">23b</A>
Renaud P.
Sibi MP.
Radicals in Organic Synthesis
Vol. 2:
Wiley VCH;
Weinheim:
2001.
<A NAME="RD35104ST-24A">24a</A>
Kamimura A.
Taguchi Y.
Omata Y.
Hagihara M.
J. Org. Chem.
2003,
68:
4996
<A NAME="RD35104ST-24B">24b</A>
Zhang W.
Pugh G.
Tetrahedron
2003,
59:
3009
<A NAME="RD35104ST-24C">24c</A>
Kato I.
Higashimoto M.
Tamura O.
Ishibashi H.
J. Org. Chem.
2003,
68:
7983
<A NAME="RD35104ST-25A">25a</A>
Stork G.
Sher PM.
J. Am. Chem. Soc.
1986,
108:
303
<A NAME="RD35104ST-25B">25b</A>
Majumdar KC.
Mukhopadhyay PP.
Synthesis
2003,
97
<A NAME="RD35104ST-26A">26a</A>
Chatgilialoglu C.
Acc. Chem. Res.
1992,
25:
188
<A NAME="RD35104ST-26B">26b</A>
Bennasar M.-L.
Zulaica E.
Juan C.
Alonso Y.
Bosch J.
J. Org. Chem.
2002,
67:
7465
<A NAME="RD35104ST-27">27</A>
Radical Cyclization of Amides 7, Typical Procedure Described from Amide 7a.
A solution of amide 7a (100 mg, 0.4 mmol) in toluene (40 mL) containing small amounts of AIBN (7 mg, 0.04
mmol) was bubbled by a dried stream of nitrogen for 10 min and heated to reflux. A
solution of tristrimethylsilylsilane (140 µL, 0.44 mmol) in toluene (10 mL) was carefully
added drop by drop in 15 min. The reaction was heated for additional 6 h. The solvent
was removed by concentration and the crude mixture was purified by flash chromatography
on silica (eluent: EtOAc-hexanes 50:50) and gave lactam 10a.
Compound 10a (77%): viscous oil. 1H NMR (CDCl3): δ = 1.25 (m, 2 H), 2.34 (m, 2 H), 3.43 (m, 1 H), 3.72 (dt, J = 11.3, 8.3 Hz, 1 H), 4.68 (dd, J = 10.3, 5.3 Hz, 1 H), 7.45 (m, 3 H), 7.80 (d, J = 7.2 Hz, 1 H). 13C NMR (CDCl3): δ = 28.2, 28.7, 40.9, 63.7, 114.9, 121.7, 122.9, 127.3, 130.6, 145.4, 170.6. IR:
3075, 2960, 1685, 1385, 1220, 1145, 740 cm-1. HRMS: m/z calcd [MH+]: 174.09189; found: 174.09163.
Compound 12c (62%): white solid; mp 103-109 °C. 1H NMR (CDCl3): δ = 1.40-1.85 (m, 4 H), 2.03 (dt, J = 11.3, 3.0 Hz, 1 H), 2.28 (dd, J = 3.0, 11.3 Hz, 1 H), 3.02 (dt, J = 3.2, 11.3 Hz, 1 H), 3.86 (dt, J = 10.2, 2.7 Hz, 1 H), 4.20 (dd, J = 3.2, 11.3 Hz, 1 H), 7.37 (dd, J = 1.1, 7.5 Hz, 1 H), 7.50 (t, J = 7.5 Hz, 1 H), 7.58 (dt, J = 1.1, 7.5 Hz, 1 H), 7.79 (d, J = 7.5 Hz, 1 H). 13C NMR (CDCl3): δ = 23.9, 24.3, 30.5, 40.4, 58.8, 121.4, 123.2, 129.3, 132.8, 135.4, 138.8. IR:
3080, 2955, 2850, 1645, 1450, 1285, 1170, 1130 cm-1. HRMS: m/z calcd [MH+]: 224.07452; found: 224.07453.
<A NAME="RD35104ST-28A">28a</A>
Xu Z.
Johannes CW.
Houri AF.
La DS.
Cogan DA.
Hofilena GE.
Hoveyda AH.
J. Am. Chem. Soc.
1997,
119:
10302
<A NAME="RD35104ST-28B">28b</A>
Fürstner A.
Thiel OR.
Ackermann L.
Org. Lett.
2001,
3:
449
<A NAME="RD35104ST-28C">28c</A>
Fürstner A.
Ackermann L.
Gabor B.
Goddard R.
Lehmann CW.
Mynott R.
Stelzer F.
Thiel OR.
Chem.-Eur. J.
2001,
7:
3236
<A NAME="RD35104ST-29A">29a</A>
Denmark SE.
Thoraransen A.
Chem. Rev.
1996,
96:
137
<A NAME="RD35104ST-29B">29b</A>
Nicolaou KC.
Montagnon T.
Snyder SA.
Chem. Commun.
2003,
551
<A NAME="RD35104ST-30">30</A>
Tandem Process from Amides 2a,d, Typical Procedure.
To a solution of amide 2a (140 mg, 0.5 mmol) in toluene was added first generation Grubbs’ catalyst (11 mg,
2.5% mol). After stirring at r.t. for 1 h and complete disappearance of the starting
material, NaH (7 mg, 1.5 mmol) was added at once and the mixture was heated to reflux.
A new addition of both Grubbs’ catalyst (11 mg, 2.5% mol) and NaH (7 mg, 1.5 mmol)
was performed after 12 h of heating and this sequence was repeated three times more.
After cooling to r.t., AIBN (8 mg, 0.05 mmol) was added. The mixture was bubbled with
a dried nitrogen stream and next heated. A solution of TTMSS (320 µL, 1 mmol) in toluene
(10 mL) containing AIBN (8 mg, 0.05 mmol) was slowly added to the reaction mixture
in 10 min. After heating at 130 °C for 6 h, the mixture was cooled to r.t., and the
solvent removed by concentration under vacuum. The products were purified after flash
chromatography on silica.