Int J Sports Med 2006; 27(5): 401-406
DOI: 10.1055/s-2005-865750
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Combinatory Effects of High-Intensity-Strength Training and Sensorimotor Training on Muscle Strength

S. Bruhn1 , N. Kullmann2 , A. Gollhofer2
  • 1University of Rostock, Department of Sport Science, Rostock, Germany
  • 2University of Freiburg, Department of Sport and Sport Science, Freiburg, Germany
Further Information

Publication History

Accepted after revision: April 15, 2005

Publication Date:
11 July 2005 (online)

Abstract

It has been shown in classical strength training studies using high loads that improvements in rate of force development are mainly due to adaptations in the intramuscular coordination. Adaptations following sensorimotor training were also characterized by improvements in the rate of force development during maximum voluntary isometric contraction. The purpose of the present study was to investigate neuromuscular adaptations of combined sensorimotor and classical strength training. Eighteen subjects were randomly assigned to two groups. Group 1 (SMT-HST) had to perform a period of sensorimotor training at first and a high-intensity strength training afterwards. Group 2 (HST-SMT) performed the high intensity strength training at first and the sensorimotor training after. Maximum voluntary isometric contraction and neuromuscular activation were measured at three occasions: Before training, after the first, and after the second period. The results after the first period confirmed the positive effects of both training regimen on rate of force development (13 % [SMT-HST] and 27 % [HST-SMT], p < 0.05) and on maximum strength (9 % [HST-SMT] and 12 % [SMT-HST], p < 0.05) during maximum voluntary contraction. Improvements caused by sensorimotor training could only be achieved, when it was performed at first. It is supposed that classical strength training with high loads basically improves the mechanical efficiency of the effectors, whereas sensorimotor training alters the afferent input on the central nervous system. In combination, the sensorimotor training can have preconditioning effects on the strength training. A combination of both training methods can thus be recommended, if the sensorimotor training is performed at first.

References

  • 1 Aagaard P, Simonsen E B, Andersen J L, Magnusson S P, Bojsen-Moller F, Dyhre-Poulsen P. Antagonist muscle coactivation during isokinetic knee extension.  Scand J Med Sci Sports. 2000;  10 58-76
  • 2 Aagaard P, Simonsen E B, Andersen J L, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training.  J Appl Physiol. 2002;  4 1318-1326
  • 3 Behm D G. Neuromuscular implications and applications of resistance training.  J Strength Condit Res. 1995;  9 264-274
  • 4 Biedert R, Meyer S. Propriozeptives Training bei Spitzensportlern. Neurophysiologische und klinische Aspekte.  Sportorthop Sporttraumat. 1996;  2 102-105
  • 5 Bruhn S, Gollhofer A, Gruber M. Proprioception training for prevention and rehabilitation of knee joint injuries.  Eur J Sports Traumatol Rel Res. 2001;  23 82-89
  • 6 Bruhn S, Kullmann N, Gollhofer A. The effects of a sensorimotor training and a strength training on postural stabilisation, maximum isometric contraction and jump performance.  Int J Sports Med. 2004;  25 56-60
  • 7 Brynin R I, Farrar K L. The use of proprioceptive exercises in athletic training.  Chiropr Sports Med. 1995;  9 141-145
  • 8 Cannon R J, Cafarreli E. Neuromuscular adaptations to training.  J Appl Physiol. 1987;  63 2396-2402
  • 9 Carrol T J, Riek S, Carson R G. Neural adaptations to resistance training.  Sports Med. 2001;  31 829-840
  • 10 Duchateau J, Hainaut K. Mechanisms of muscle and motor unit adaptation to explosive power training. Komi PV Strength and Power in Sport. Oxford; Blackwell Science 2003: 315-330
  • 11 Enoka R. Muscle strength and its development: New perspectives.  Sports Med. 1988;  6 146-168
  • 12 Gandevia S C. Spinal and supraspinal factors in human muscle fatigue.  Physiol Rev. 2001;  81 1725-1789
  • 13 Gollhofer A. Proprioceptive training - Consiterations for strength and power production. Komi PV Strength and Power in Sport. Oxford; Blackwell Science 2003: 331-342
  • 14 Gollhofer A, Scheuffelen C, Lohrer H. Neuromuskuläre Trainingsform und ihre funktionelle Auswirkung auf die Stabilisierung im Sprunggelenk. Zichner L, Engelhardt M, Freiwald J Neuromuskuläre Dysbalancen. 3rd ed. Nürnberg; Novartis Pharma Verlag 1999: 109-122
  • 15 Gruber M. Die neuromuskuläre Kontrolle des Kniegelenks vor und nach einem spezifischen sensomotorischen Training beim unverletzten Sportler. Stuttgart; Univ. Diss. 2001
  • 16 Gruber M, Gollhofer A. Impact of sensorimotor training on the rate of force development and neural activation.  Eur J Appl Physiol. 2004;  92 98-105
  • 17 Haekkinen K, Komi P V. Electromyographic changes during strength training and detraining.  Med Sci Sports Exerc. 1983;  15 455-460
  • 18 Haekkinen K, Komi P V, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles.  Acta Physiol Scand. 1985;  10 587-600
  • 19 Heitkamp H C, Horstmann T, Mayer F, Weller J, Dickhuth H H. Gain in strength and muscular balance after balance training.  Int J Sports Med. 2001;  22 285-290
  • 20 Jerosch J, Pfaff G, Thorwesten L, Schoppe R. Auswirkungen eines propriozeptiven Trainingsprogramms auf die sensomotorischen Fähigkeiten der unteren Extremität bei Patienten mit einer vorderen Kreuzbandinstabilität.  Sportverl Sportschad. 1998;  12 121-130
  • 21 Kollmitzer J, Ebenbichler G R, Sabo A, Kerschan K, Bochdansky T. Effects of back extensor strength training versus balance training on postural control.  Med Sci Sports Exerc. 2000;  32 1770-1776
  • 22 Komi P V, Viitasalo J, Rauramaa R, Vihko V. Effect of isometric strength training on mechanical, electrical and metabolic aspects of muscle function.  Eur J Appl Physiol. 1978;  40 45-55
  • 23 Komi P V. Training of muscle strength and power: Interaction of neuromotoric, hypertrophic and mechanical factors.  Int J Sports Med. 1986;  7 10-15
  • 24 McDonagh M JN, Davies C TM. Adaptive response of mammalian muscle to exercise with high loads.  Eur J Appl Physiol. 1984;  52 139-155
  • 25 Moritani T, de Fries H A. Neural factors versus hypertrophy in the time course of muscle strength gain.  Am J Phys Med. 1979;  58 115-130
  • 26 Moritani T. Motor unit and motoneurone excitability during explosive movements. Komi PV Strength and Power in Sport. Oxford; Blackwell Science 2003: 27-49
  • 27 Rabita G, Perot C, Lensel-Corbeil G. Differential effect of knee extension isometric training on the different muscles of the quadriceps femoris of humans.  Eur J Appl Physiol. 2000;  83 531-538
  • 28 Rutherford O M. Muscular coordination and strength training. Implications for injury rehabilitation.  Sports Med. 1988;  5 196-202
  • 29 Sale D G. Neural adaptation to resistance training.  Med Sci Sports Exerc. 1988;  20 135-145
  • 30 Sale D G. Neural adaptation to strength training. Komi PV Strength and Power in Sport. Oxford; Blackwell Science 2003: 281-314
  • 31 Schmidtbleicher D. Motorische Beanspruchungsform Kraft - Struktur und Einflussgrößen, Adaptationen, Trainingsmethoden, Diagnose und Trainingssteuerung.  Dt Z Sportmed. 1987;  38 356-377
  • 32 Tesch P A. Acute and long-term metabolic changes consequent to heavy-resistance exercises.  Med Sci Sports Exerc. 1987;  26 67-87
  • 33 Toole T, Hirsch M A, Forkink A, Lehman D A, Maitland C G. The effects of a balance and strength training program on equilibrium in Parkinsonism: A preliminary study.  Neuro Rehabil. 2000;  14 165-174

S. Bruhn

University of Rostock, Department of Sport Science

Ulmenstraße 66

18057 Rostock

Germany

Phone: + 493814982753

Fax: + 49 38 14 98 27 47

Email: sven.bruhn@philfak.uni-rostock.de

    >