Int J Sports Med 2006; 27(7): 540-545
DOI: 10.1055/s-2005-865825
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Spectral Analysis of Skin Blood Flowmotion Before and After Exercise in Healthy Trained and in Sedentary Subjects

M. Rossi1 , G. Santoro1 , S. Maurizio1 , A. Carpi2
  • 1Department of Internal Medicine, University of Pisa, Pisa, Italy
  • 2Department of Reproduction and Ageing, University of Pisa, Pisa, Italy
Further Information

Publication History

Accepted after revision: May 30, 2005

Publication Date:
24 November 2005 (online)

Abstract

Cutaneous blood flowmotion (CBF) can contribute to a reduction in the resistance in skin microvascular networks. The increase of CBF during exercise can improve the capacity of skin microvascular networks to transport and eliminate heat. In order to verify if the physical training could increase the skin blood flowmotion during exercise, we performed spectral analysis of cutaneous forearm laser Doppler signal, before and after acute maximal exercise in 15 healthy trained subjects (TS) and in 15 control sedentary subjects (SS). Within the total spectrum of 0.009 - 2.3 Hz, five frequency intervals of CBF were analysed: 0.009 - 0.02 Hz (endothelial activity), 0.02 - 0.06 Hz (sympathetic activity), 0.06 - 0.2 Hz (vascular myogenic activity), 0.2 - 0.6 Hz (respiratory activity), and 0.6 - 2.3 Hz (heart activity). In basal conditions, no difference between TS and SS was observed in the cutaneous blood perfusion (CBP), expressed in conventional perfusion units (PU), and in the mean value of CBF total spectrum power density (PD), measured in PU/Hz, while the absolute PD of the endothelial and myogenic CBF components was significantly higher (p < 0.05) in TS (0.69 ± 0.62 PU/Hz and 0.47 ± 0.43 PU/Hz, respectively) than in SS (0.29 ± 0.16 PU/Hz and 0.23 ± 0.16 PU/Hz, respectively). In both TS and SS, acute exercise induced a significant increase of CBP mean value (30.91 ± 20.28 PU, p < 0.0005 and 16.45 ± 7.02 PU, p < 0.0005; respectively) and of CBF total spectrum PD (6.65 ± 4.13 Hz/PU, p < 0.001 and 4.17 ± 1.86 Hz/PU, p < 0.05; respectively), with a significant difference of these two parameters between the two groups (p < 0.05). After exercise, CBF components regarding endothelial and myogenic activities maintained a higher PD mean value in TS in respect to SS (1.69 ± 1.34 PU/Hz and 1.59 ± 0.93 versus 0.91 ± 0.44 and 0.98 ± 0.48 PU/Hz respectively, p < 0.05). These findings suggest that physical training is associated with the increase of CBF and particularly on its endothelial and myogenic components in response to exercise. This can favour a greater reduction of resistance in skin microvascular networks during exercise and consequently an increase of its capacity to transport and eliminate heat.

References

  • 1 Bertuglia S, Colantuoni A, Coppini G, Intaglietta M. Hypoxia- or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation.  Am J Physiol. 1991;  260 362-372
  • 2 Bertuglia S, Colantuoni A, Intaglietta M. Effects of L-NMMA and indomethacin on arterial vasomotion in skeletal muscle microcirculation of conscious and anestetized animals.  Microvasc Res. 1994;  48 68-84
  • 3 Bollinger A, Yanar A, Hoffman U, Franzeck U K. Is high frequency fluxmotion due to respiration or to vasomotion activity?. Messmer K Progress in Applied Microcirculation. Basel; Karger 1993: 52-58
  • 4 Colantuoni A, Bertuglia S, Intaglietta M. Microvascular vasomotion: Origin of laser Doppler fluxmotion.  Int J Microcirc Clin Exp. 1994;  14 151-158
  • 5 Colberg S R, Parson H K, Holton D R, Nunnold T, Vinik A I. Cutaneous blood flow in type 2 diabetic individuals after an acute bout of maximal exercise.  Diabetes Care. 2003;  6 1883-1888
  • 6 Ducloux G, Ducloux H, Conri C. Cutaneous circulation in sportsmen. A laser Doppler study.  Arch Mal Coeur Vaiss. 1989;  2 35-37
  • 7 Johnson J M. Physical training and the control of skin blood flow.  Med Sci Sports Exerc. 1998;  30 382-386
  • 8 Kastrup J, Buhlow J, Lassen N A. Vasomotion in humans skin before and after local heating recorded with laser Doppler flowmetry. A method for induction of vasomotion.  Int J Microcirc Clin Exp. 1989;  8 205-215
  • 9 Kvernmo H D, Stefanovska A, Bracic M, Kirkeboen K A, Kvernebo K. Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise.  Microvasc Res. 1998;  56 173-182
  • 10 Nilsson G E, Tenland T, Oeberg P A. Evaluation of laser Doppler flowmeter for measurements of tissue blood flow.  IEEE Trans Biomed Eng. 1980;  27 597-604
  • 11 Parthimos D, Edwards D H, Griffith T M. Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow.  Cardiovasc Res. 1996;  31 388-399
  • 12 Rossi M, Cupisti A, Perrone L, Mariani S, Santoro G. Acute effect of exercise-induced leg ischemia on cutaneous vasoreactivity in patients with stage in peripheral artery disease.  Microvas Res. 2002;  64 14-20
  • 13 Rossi M, Ricco R, Carpi A. Spectral analysis of skin laser Doppler blood perfusion signal during cutaneous hyperemia in response to acetylcholine iontophoresis and ischemia in normal subjects.  Clin Hemorheol Microcirc. 2004;  31 303-310
  • 14 Rossi M, Bertuglia S, Varanini M, Giusti A, Santoro G, Carpi A. Generalised wavelet analysis of cutaneous flowmotion during post-occlusive reactive hyperemia in patients with peripheral arterial obstructive disease.  Biomed Pharmacother. 2005;  5 233-239
  • 15 Rossi M, Santoro G, Ricco R, Pentimone F, Carpi A. Effect of chronic aerobic exercise on cutaneous microcirculatory flow response to insulin iontophoresis and to ischemia in elderly males.  Int J Sports Med. (in press); 
  • 16 Schabauer A MA, Rooke T W. Cutaneous laser Doppler flowmetry: applications and findings.  Mayo Clin Proc. 1994;  69 564-574
  • 17 Serné E H, Ijezerman R G, Gans R O, Nijveldt R, De Vries G, Evertz R, Donker J M, Stehouwer C D. Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia.  Diabetes. 2002;  51 1515-1522
  • 18 Stauss H M, Anderson E A, Haynes W G, Kregel K C. Frequency response characteristics of sympathetically mediated vasomotor waves in humans.  Am J Physiol. 1998;  274 1277-1283
  • 19 Stefanovska A, Kroselj P. Correlation integral and frequency analysis of cardiovascular functions.  Open Syst Inf Dyn. 1997;  4 457-478
  • 20 Stefanovska A, Bracic M, Kvernmo K. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique.  IEEE Trans Biomed Eng. 1999;  46 1230-1239
  • 21 Taddei S, Galetta F, Virdis A, Ghiadoni L, Salvetti G, Franzoni F, Giusti C, Salvetti A. Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes.  Circulation. 2000;  101 2896-2901
  • 22 Ursino M, Cavalcanti P, Bertuglia S, Colantuoni A. Theoretical analysis of complex oscillations in multibranched microvascular networks.  Microvasc Res. 1996;  51 229-249
  • 23 Vassalle C, Lubrano V, Domenici C, L'Abbate A. Influence of chronic aerobic exercise on microcirculatory flow and nitric oxide in humans.  Int J Sports Med. 2003;  24 30-35
  • 24 Wang J S. Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature.  Eur J Appl Physiol. 2004;  93 429-434

M. Rossi

Dipartimento di Medicina Interna, Università degli Studi di Pisa

Via Roma 67

56100 Pisa

Italy

Phone: + 50993207

Fax: + 50 55 34 14

Email: mrossi@int.med.unipi.it

    >