Zusammenfassung
Klassische Theorien definieren Stress als Reaktion auf eine Bedrohung der Homöostase
eines Organismus, welche eine Anpassungsreaktion erfordert. Langfristige Konsequenzen
in Bezug auf die Entwicklung von Erkrankungen zu postulieren ist auf der Grundlage
solcher Konzepte jedoch problematisch. Das Konzept von Allostatic Load ermöglicht
Aussagen über Reaktionssequenzen von Stressmediatoren und von diesen initiierten Effekten
und pathogenen Folgen. Stressmediatoren werden kurzfristig und in geringen Konzentrationen
adaptiv sezeniert, können aber langfristig zu schädigenden Effekten führen. Dieses
Konzept erlaubt die Formulierung von Ursache-Wirkungs-Kaskaden, um den Zusammenhang
einer Dysregulation von Stressmediatoren wie Glukokortikoiden und Katecholaminen und
der Anfälligkeit für Erkrankungen zu beschreiben. In der vorliegenden Arbeit beschreiben
wir zunächst den theoretischen Hintergrund des Konzeptes von Allostatic Load. Anschließend
übertragen wir dieses Konzept auf Forschungsergebnisse, welche darauf hinweisen, dass
eine Dysregulation der Stressreaktionssysteme bei multipler Sklerose und Brustkrebs
für die Pathogenese oder die Krankheitsentwicklung bedeutsam sein könnte. Stressmediatoren
und ihre Folgen in der Reaktionskaskade sind jedoch in einem nicht-linearen Netzwerk
miteinander verbunden.
Abstract
Classical theories have conceptualized stress as a reaction to threat to the homeostasis
within the organism requiring an adaptive response. However, postulating mechanisms
that could link such responses to long-term detrimental health outcomes remains difficult.
The allostatic load concept enables us to think about how mediators can be protective
in the short run but may have damaging effects when overused and/or not shut off.
It further facilitates the formulation of cause-effects cascades to explain the link
of dysregulations in stress mediators such as glucocorticoids and catecholamines and
increased susceptibility for certain diseases. In the first section, we briefly summarize
the theoretical background. We then employ the concept to integrate findings from
basic and clinical research on dysregulations of the stress response systems in multiple
sclerosis and breast cancer. Based on this model, it seems likely that such dysregulations
are implicated in progression and possibly pathogenesis of these diseases. When using
allostatic load as a heuristic model, one needs to consider that stress mediators
and outcomes are interconnected in a non-linear network.
Key words
Stress - psychoneuroimmunology - oncology - multiple sclerosis
Literatur
1
Cannon W B.
Emotional stimulation of adrenal secretion.
Am J Physiol.
1911;
28
64-70
2
Cannon W B.
The emergency function of the adrenal medulla in pain and major emotions.
Am J Physiol.
1914;
33
356-372
3
Selye H.
A syndrome produced by diverse noxious agents.
Nature.
1936;
138
32
4
Selye H.
The general adaptation syndrome and the diseases of adaptation.
J Clin Endocrinol.
1946;
6
117-230
5
Mason J W.
A re-evaluation of the concept of „non-specificity” in stress theory.
J Psychiatr Res.
1971;
8
323-333
6
Dimsdale J E, Moss J.
Plasma catecholamines in stress and exercise.
JAMA.
1980;
243
340-342
7
Chrousos G P, Gold P W.
The concept of stress and stress system disorders. Overview of physical and behavioral
homeostasis.
JAMA.
1992;
267
1244-1252
8
Chrousos G P.
Syndromes of glucocorticoid resistance.
Ann Int Med.
1993;
119
1113-1124
9
Besedovsky H O, Sorkin E.
Network of immune-endocrine interactions.
Clin Exp Immunol.
1977;
27
1-12
10 Ader R, Felten D L, Cohen N (eds). Psychoneuroimmunology. San Diego; Academic Press
2001
11 Sterling P, Eyer J.
Allostasis: A new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress, cognition and health. New York;
Wiley 1988: 629-649
12
McEwen B S.
Protection and damage from acute and chronic stress. Allostasis and allostatic overload
and relevance to the pathophysiology of psychiatric disorders.
Ann N Y Acad Sci.
2004;
1032
1-7
13
Schulkin J.
Corticotropin-releasing hormone signals adversity in both the placenta and the brain:
regulation by glucocorticoids and allostatic overload.
J Endocrinol.
1999;
161
349-356
14
McEwen B S.
Protective and damaging effects of stress mediators.
N Engl J Med.
1998;
338
171-179
15
Koob G F, LeMoal M.
Drug addiction, dysregulation of reward, and allostasis.
Neuropsychopharmacology.
2001;
24
97-129
16
McEwen B S, Seeman T.
Protective and damaging effects of mediators of stress. Elaborating and testing the
concepts of allostasis and allostatic load.
Ann NY Acad Sci.
1999;
896
30-47
17
McEwen B S, Wingfield J C.
The concept of allostasis in biology and biomedicine.
Hormones and Behavior.
2003;
43
2-15
18
McEwen B S, Wingfield J C.
Response to commentaries on the concept of allostasis.
Hormones and Behavior.
2003;
43
28-30
19
Kaplan J R, Petterson K, Manuck S B, Olsson G.
Role of sympatho-adrenal medullary activation in the initiation and progression of
atheriosclerosis.
Circulation.
1991;
84, Suppl VI
VI23-VI32
20
Lupien S J, McEwen B S.
The acute effects of corticosteroids on cognition: Integration of animal and human
model studies.
Brain Res Rev.
1997;
24
1-27
21
Haddad J J, Saade N E, Safieh-Garabedian B.
Cytokines and neuro-immune-endocrine interactions: A role for the hypothalamic-pituitary-adrenal
revolving axis.
J Neuroimmunol.
2002;
133
1-19
22
Sapolsky R M, Romero L M, Munck A U.
How do glucocorticoids influence stress responses? Integrating permissive, suppressive,
stimulatory, and preparative actions.
Endocr Rev.
2000;
21
55-89
23
Webster J I, Tonelli L, Sternberg E M.
Neuroendocrine regulation of immunity.
Ann Rev Immunol.
2002;
20
125-163
24
McEwen B S, Biron C A, Brunson K. et al .
Neural-endocrine-immune interactions: The role of adrenocorticoids as modulators of
immune function in health and disease.
Brain Res Rev.
1997;
23
79-133
25
McEwen B S.
Interacting mediators of allostasis and allostatic load: towards an understanding
of resilience in aging.
Metabolism.
2003;
52 (Suppl 2)
10-16
26
Seeman T, McEwen B, Rowe J, Singer B H.
Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful
aging.
Proc Natl Acad Sci U S A.
2001;
98
4770-4775
27
Yamada K, Duong D T, Scott D K. et al .
CCAAT/Enhancer-binding protein is an accessory factor for the glucocorticoid response
from the cAMP response element in the rat phosphoenolpyruvate carboxykinase gene promoter.
J Biol Chem.
1999;
274
5880-5887
28
McEwen B S.
Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load.
Ann NY Acad Sci.
2001;
933
265-277
29
Cohen S, Hamrick N, Rodriguez M S. et al .
Reactivity and vulnerability to stress-associated risk for upper respiratory illness.
Psychosom Med.
2002;
64
302-310
30
Wilder R L.
Neuroendocrine-immune system interactions and autoimmunity.
Annu Rev Immunol.
1995;
13
307-338
31
Schorr E C, Arnason B G.
Interactions between the sympathetic nervous system and the immune system.
Brain Behav Immun.
1999;
13
271-278
32
Sternberg E M, Glowa J R, Smith M A. et al .
Corticotropin releasing hormone related behavioural and neuroendocrine response to
stress in Lewis and Fischer rats.
Brain Res.
1992;
570
54-60
33
Mason D, MacPhee I, Antoni F.
The role of the neuroendocrine system in determining genetic susceptibility to experimental
allergic encephalomyelitis in the rat.
Immunol.
1990;
70
1-5
34
Kuroda Y, Mori T, Hori T.
Restraint stress suppresses experimental allergic encephalomyelitis in Lewis rats.
Brain Res Bull.
1994;
34
15-17
35
Bartolomucci A, Sacerdote P, Panerai A E. et al .
Chronic psychosocial stress-induced down-regulation of immunity depends upon individual
factors.
J-Neuroimmunol.
2003;
141 (1 - 2)
58-64
36
MacPhee I, Antoni F A, Mason D W.
Spontaneous recovery from rats from experimental allergic encephalomyelitis is dependent
on regulation of the immune system by endogenous adrenal corticosteroids.
J Exp Med.
1989;
169
431-445
37
Bolton C, Flower R J.
The effect of anti-glukokortikoid RU 38 486 on steroid-mediated suppression of experimental
allergic encephalomyelitis (EAE) in the Lewis rat.
Life Sci.
1989;
45
97-104
38
Michelson D, Stone L, Galliven E. et al .
Multiple sclerosis is accociated with alterations in hypothalamic-pituitary-axis function.
J Clin Endocrinol Metab.
1994;
79
848-853
39
Grasser A, Möller A, Backmund A. et al .
Heterogeneity of hypothalamic-pituitary-adrenal system response to a combined dexamethasone-CRH
test in multiple sclerosis.
Exp Clin Endocrinol Diabetes.
1996;
104
31-37
40
Wei T, Lightman S L.
The neuroendocrine axis in patients with multiple sclerosis.
Brain.
1997;
120
1067-1076
41
Purba J S, Raadsheer F, Hofman M A. et al .
Increased number of corticotropin releasing hormone expressing neurons in the hypothalamic
paraventricular nucleus of patients with multiple sclerosis.
Neuroendocrinol.
1995;
62
62-70
42
Reder A T, Lowy M T, Meltzer H Y, Antel J P.
Dexamethasone suppression test abnormalities in multiple sclerosis: relation to ACTH
therapy.
Neurology.
1987;
37
849-853
43
Limone P, Ferrero B, Calvelli P. et al .
Hypothalamo-pituitary-adrenal axis function and cytokine production in multiple sclerosis
with or without interferon-β treatment.
Acta Neurol Scand.
2002;
105
372-377
44
Then Bergh F, Kümpfel T, Trenkwalder C. et al .
Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical
course of MS.
Neurology.
1999;
53
772-777
45
Heesen C, Gold S M, Raji A. et al .
Cognitive impairment correlates with hypothalamo-pituitary-adrenal axis dysregulation
in multiple sclerosis.
Psychoneuroendocrinol.
2002;
27
505-517
46
Schumann E M, Kümpfel T, Then Bergh F. et al .
Activity of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: correlations
with gadolinium-enhancing lesions and ventricular volume.
Ann Neurol.
2002;
51
763-767
47
Frohman E M, Monson N L, Lovett-Racke A E, Racke M K.
Autonomic regulation of neuroimmunological responses: implications for multiple sclerosis.
J Clin Immunol.
2001;
21
61-73
48
Cosentino M, Zaffaroni M, Marino F. et al .
Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear
cells from multiple sclerosis patients: effect of cell stimulation and possible relevance
for activation-induced apoptosis.
J Neuroimmunol.
2002;
133 (1 - 2)
233-240
49
Flachenecker P, Reiners K H, Krauser M. et al .
Autonomic dysfunction in multiple sclerosis is related to disease activity and progression
of disability.
Mult Scler.
2001;
7
324-327
50
Huitinga I, Erkut Z A, Beurden D Van, Swaab D F.
The hypothalamo-pituitary-adrenal axis in multiple sclerosis.
Ann NY Acad Sci.
2003;
992
118-128
51
Then Bergh F, Grasser A, Trenkwalder C. et al .
Binding characteristics of the glucocorticoid receptor in peripheral blood lymphocytes
in multiple sclerosis.
J Neurol.
1999;
246
292-298
52
Correale J, Gilmore W, Li S. et al .
Resistance to glucocorticoid-induced apoptosis in PLP peptide-specific T cell clones
from patients with progressive MS.
J Neuroimmunol.
2000;
109
197-210
53 Winsen L van, Muris D, Dijkstra C, Polman C. Glucocorticoid sensitivity in patients
with multiple sclerosis. Mult Scler ECTRIMS 2002 Poster P274
54
DeRijk R H, Eskandari F, Sternberg E M.
Corticosteroid resistance in a subpopulation of multiple sclerosis patients as measured
by ex vivo dexamethasone inhibition of LPS induced IL-6 production.
J Neuroimmunol.
2004;
151 (1 - 2)
180-188
55
Karaszewski J W, Reder A T, Maselli R. et al .
Sympathetic skin responses are decreased and lymphocyte beta-adrenergic receptors
are increased in progressive multiple sclerosis.
Ann Neurol.
1990;
27
366-372
56
Zoukos Y, Kidd D, Woodroofe M N. et al .
Increased expression of high affinity IL-2 receptors and beta-adrenoceptors on peripheral
blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis.
Brain.
1994;
117 (Pt 2)
307-315
57
Zoukos Y, Thomaides T N, Kidd D. et al .
Expression of beta2 adrenoreceptors on peripheral blood mononuclear cells in patients
with primary and secondary progressive multiple sclerosis: a longitudinal six month
study.
J Neurol Neurosurg Psychiatry.
2003;
74
197-202
58
Heesen C, Gold S M, Sondermann J. et al .
Oral terbutaline differentially affects cytokine (IL-10, IL-12, TNF, IFNγ) release
in multiple sclerosis patients and controls.
J Neuroimmunol.
2002;
132
189-195
59
Giorelli M, Livrea P, Trojano M.
Post-receptorial mechanisms underlie functional disregulation of beta2-adrenergic
receptors in lymphocytes from Multiple Sclerosis patients.
J Neuroimmunol.
2004;
155
143-149
60
Frohman E M, Vayuvegula B, Noort S van den, Gupta S.
Norepinephrine inhibits gamma-interferon-induced MHC class II (Ia) antigen expression
on cultured brain astrocytes.
J Neuroimmunol.
1988;
17
89-101
61
Keyser J De, Wilczak N, Leta R, Streetland C.
Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors.
Neurology.
1999;
53
1628-1633
62
Heesen C, Gold S M, Hartmann S. et al .
Endocrine and cytokine response to standardized physical stress in patients with multiple
sclerosis and healthy controls.
Brain Behav Immun.
2003;
17
473-481
63
Heesen C, Köhler G, Gross R. et al .
Fatigue in multiple sclerosis: altered cardiovascular and cytokine responses to cognitive
stress.
Mult Scler.
2005;
11
51-57
64
Heesen C, Schulz H, Schmidt M. et al .
Endocrine and cytokine response to acute psychological stress in multiple sclerosis.
Brain Behav Immun.
2002;
16
282-287
65
Ackerman K D, Martino M, Heyman R. et al .
Stressor-induced alteration of cytokine production in multiple sclerosis patients
and controls.
Psychosom Med.
1998;
60
484-491
66
Fassbender K, Schmidt R, Mossner R. et al .
Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple
sclerosis: association with cerebral inflammation.
Arch Neurol.
1998;
55
66-72
67
Keyser J De, Zeinstra E, Wilczak N.
Astrocytic beta2-adrenergic receptors and multiple sclerosis.
Neurobiol Dis.
2004;
15
331-339
68
Keyser J De, Zeinstra E, Mostert J, Wilczak N.
Beta 2-adrenoceptor involvement in inflammatory demyelination and axonal degeneration
in multiple sclerosis.
Trends Pharmacol Sci.
2004;
25
67-71
69
Kümpfel T, Then Bergh F, Friess E. et al .
Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone
and corticotropin-releasing hormone test in patients with multiple sclerosis.
Neuroendocrinology.
1999;
70
431-438
70
Huitinga I, Erkut Z A, Beurden D van, Swaab D F.
Impaired hypothalamus-pituitary-adrenal axis activity and more severe multiple sclerosis
with hypothalamic lesions.
Ann Neurol.
2004;
55
37-45
71 Gold S M, Raji A, Huitinga I. et al .Hypothalamo-pituitary-adrenal axis hyperactivity
predicts disease progression in multiple sclerosis. (zur Publikation eingereicht)
72
Pharoah P DP, Day N E, Duffy S. et al .
Family history and the risk of breast cancer: A systemic review and meta-analysis.
Int J Cancer.
1997;
71
800-809
73
Arver B, Du Q, Chen J. et al .
Hereditary breast cancer: A review.
Cancer Biol.
2000;
10
271-288
74
Claus E B, Schildkraut J M, Thompson W D, Risch N J.
The genetic attributable risk of breast cancer and ovarian cancer.
Cancer.
1996;
77
2318-2324
75 Bovbjerg D H, Valdimarsdottir H B.
Interventions for healthy individuals at familial risk for cancer. In: Baum A, Anderson BL (eds) Psychosocial interventions for cancer. Washington;
American Psychological Association 2001: 305-320
76
Cohen M, Klein E, Kuten A. et al .
Increased emotional distress in daughters of breast cancer patients is associated
with decreased natural killer cytotoxic activity, elevated levels of stress hormones
and decreased secretion of TH1 cytokines.
Int J Cancer.
2002;
100
347-354
77
Gold S M, Zakowski S G, Valdimarsdottir H B, Bovbjerg D H.
Stronger endocrine responses after brief psychological stress in women at familial
risk of breast cancer.
Psychoneuroendocrinology.
2003;
28
584-593
78
Kirschbaum C, Pirke K M, Hellhammer D K.
The „Trier Social Stress Test” - a tool for investigating psychobiological stress
responses in a laboratory setting.
Neuropsychobiology.
1993;
28
76-81
79
James G D, Berge-Landry H van, Valdimarsdottir H B. et al .
Urinary catecholamine levels in daily life are elevated in women at familial risk
of breast cancer.
Psychoneuroendocrinology.
2004;
29
831-838
80 Dettenborn L, James G D, Berge-Landry H van. et al .Heightened cortisol responses
to daily stress in working women at familial risk for breast cancer. Biological Psychology
(in press)
81
Valdimarsdottir H B, Zakowski S G, Gerin W. et al .
Heightened psychobiological reactivity to laboratory stressors in healthy women at
familial risk of breast cancer.
J Behav Med.
2002;
25
51-65
82
Bovbjerg D H, Valdimarsdottir H B.
Familial cancer, emotional distress, and low natural cytotoxic activity in healthy
women.
Ann Oncol.
1993;
4
745-752
83
Imai K, Matsuyama S, Miyake S. et al .
Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an
11-year follow-up study of a general population.
Lancet.
2000;
356
1795-1799
84 Gold S M. Acute endocrine stress reactivity and recovery in women at familial risk
of breast cancer. Dissertation. Universität Hamburg; 2003 erhältlich unter http://www.sub.uni-hamburg.de/opus/volltexte/2003/1023/
85
Dallman M F.
Stress by any other name.
Horm Behav.
2003;
43
18-20
PD Dr. med. Dr. phil. Karl-Heinz Schulz
Universitätsklinikum Eppendorf · Transplantationszentrum und Institut für Medizinische
Psychologie
Martinistraße 52, Gebäude S 35
20246 Hamburg
Email: khschulz@uke.uni-hamburg.de